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Introduction

The following material is selected from a course of lectures given

at the University of Florida in Gainesville, Florida during 1971/72. The

reader is expected to have read both Gorensteins' Finite Groups and much

of HuppertTs Endliche Gruppen I. In particular he must be familiar with

the concepts of p-constraint and p-stability in order to begin, although

there is a short discussion of these concepts in an appendix here.

The topics covered are such that I feel rather diffident about

publishing these notes at all. The title should perhaps be changed to

something like TLectures on some results of Bender on finite groups1.

No less than three of his major results are studied here and of course

the classification of A*-groups depends on his Tstrongly embedded sub-

group' theorem - which is not studied here at all. I feel that the theorems

and techniques of the papers TOn the uniqueness theorem' and TOn groups

with abelian Sylow 2-subgroupsT are too important for finite groups and

much too original to remain, as at present, accessible only to a very few

specialists. I think that I understand the motivation for the abbreviation

of the published versions of these two results. However, though it is

clear that a proof becomes considerably more readable when a two or

three page induction can be replaced by the words 'By induction we haveT,

these details must sometime be filled in. And unfortunately, I think

Dr. Bender has sometimes disguised the deepest and most elegant argu-

ments by this very brevity. I hope that these notes will serve to make

more of the group theoretical public aware of these incredibly rich results.

I must thank here the audience at the University of Florida -

Mark Hale, Karl Keppler, Ray Shepherd and Ernie Shult. The contribu-

tion of Ernie Shult in particular cannot be minimized. Without him, we

would all have floundered very soon.

December, 1973 Terry Gagen
Sydney, Australia
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Notations

The notation used here is more or less standard. The reader
should refer to [12] or [15] when in doubt.

The set of all self centralizing normal subgroups of P.

The set of all self centralizing normal subgroups of a

Sylow p-subgroup.

I/I (A, 77) The set of all A-invariant 77-subgroups of G where 77 is a

set of primes.

I/I* (A, 77) The maximal elements of I/L(A, 77).
vjr vjr

r(P) The number of generators of an elementary abelian subgroup

of P of maximal order (amongst all elementary abelian

subgroups of P).

A B <Ab : b € B).

G A Sylow p-subgroup of G.

0 (G) The maximal normal 77- subgroup of G, 77 a set of primes.

°a TT(G) °77(G m o d °a(G))#

0 (G) The smallest normal subgroup of G such that G/0 (G) is

a 77-group.

F(G) The Fitting subgroup of G.

$(G) The Frattini subgroup of G.

The following two results are absolutely basic.

1. The Three Subgroups Lemma

If A, B, C c_G, N ^ G and [A, B, C] c N, [B, C, A] c N, then

[C, A, B] c N.

2. If P is a p-group of class at most 2, then for all n e Z and for

all x, y e P,

(xy)n = xnyn[y, x ] n ( l

viii

 
 

 



Elementary results

Definition. A group of automorphisms of a group P s tabi l izes

a chain P = P 3 P D . . . 3 P = 1 if [A, P . ] c p , 1 = 0 , . . . , n - 1 .
0 = 1 = = n L ' i J = x+]_> 9 y

Here [a, x] = x " ^ for x e P , a e A.

Theorem 0 . 1 . If a group of automorphisms A of a TT-group P

s tab i l izes a chain P 3 P 2 . . . E! p = 1 > then A is a TT-group.
— l — — n ~~~~~~~~~

Proof. Suppose a e A is a T\'-automorphism of P. Clearly, by

induction we may assume that [a, P ] = 1. Then if x e P, x = xy

where y e P , since [a, P] c P .

a ? a a
It follows that x = xy , . . . , x = xy' ' = x.
Since y is a v- element while a is a 7rT-element, we have that

y = 1 and [a, P] = 1. Thus a = 1 and A is a TT- group. /

Corollary 0. 2. If A is a TTT-group of automorphisms of a TT-group

P such that [P, A, A] = 1, then [P, A] = 1 and so A = 1.

Proof. A stabilizes the chain P 3 [P, A] 3 [P, A, A] = 1. /

Lemma 0. 3. Let A be a TT'-group of automorphisms of a ir-

group P. Let Q be an A-invariant normal subgroup of P. Then

Cp/Q(A) = Cp(A)Q/Q.

Proof. Clearly Cp(A)Q/Q c Cp/Q(A).

Suppose now that xQ is a coset of Q in P which is fixed by A.

Let QA act as a group of permutations on xQ where A acts in the

obvious way and Q acts by multiplication on the right. Then QA acts

transitively on xQ since Q does. Let A be the stabilizer of a point.

Then |A1| = | Q A | / | X Q | = | A | .

By the Schur Zassenhaus-Feit-Thompson Theorem A is con-

 
 

 



jugate to A. Thus there exists y € xQ such that y e Cp(A). /

Remark. Note that in every application of 0. 3, 0. 4 in these

notes, it will be known a priori that at least one of A or P is solvable.

Hence the Feit-Thompson Theorem will not be required in the applications

of 0. 3, 0. 4 here.

Corollary 0. 4. Let P be a TT-group, A a 7rT-group of automor-

phisms of P. Then P = [P, A]Cp(A).

Proof. [P, A] c p and is A-invariant. Also A centralizes

P/[P, A]. /

Corollary 0. 5. If A is a 77T-group of automorphisms of an

abelian TT-group P, then P = C p (A) © [P, A].

Proof. We show that C-,(A) n [P, A] = 0, writing P additively.

Let 0 be the endomorphism of P defined by 0 = -i—r 2 a. Clearly
IAI aeA

b0 = 0b = 0 for all b e A. Thus 62 = 0.

Since P0 n ker 0 = 0, P = P0 £> ker 0.

Now if x € C^(A), then x0 = - i 2 xa = x and so C^(A) c P0.
P iAl acA P ~

Finally if [x, a] e [P, A], then (-x + xa)0 = -x0 + x0 = 0 and so

[x, a] e ker 0. Thus Cp(A) n [P, A] = 0. The result follows from 0. 4. /

Lemma 0. 6. (Thompson) Any p-group P contains a character-

istic subgroup C such that

(a) cl C < 2 and C/Z(C) is elementary;

(b) [P, C]cz (C) ;

(c) Cp(C) = Z(C);

(d) Any automorphism a * 1 of order prime to p acts non-

trivially on C.

Proof. We first show that (c) and C char P together ensure (d).

For suppose that [a, C] = 1, where a is our given pT-automorphism.

Then

[a, C, P] = 1.

 
 

 



Also

[C, P, a ] c [ c , a] = l.

Thus

[P, a, C] = 1

[P> a ] c C p ( C ) = Z(C) by (c).

Hence

[P, a, a] = 1. By 0. 2, [P, a] = 1.

To show the existence of C we proceed as follows. First if any

subgroup A c Seoi(P) is characteristic in P, then take A = C. Clearly

(a), (b), (c) hold. Hence we may suppose that no maximal abelian sub-

group of P is characteristic. Let D be a maximal characteristic

abelian subgroup of P. Clearly C (D) 3 D and Cp(D) char P. Let

C/D = ^(ZtP/D)) n Cp(D)/D.

Clearly C 3 D, and C is a characteristic subgroup of P. Since

D c Z(C) and Z(C) is an abelian characteristic subgroup of P, maxi-

mality of D ensures that D = Z(C). Clearly C is a characteristic

subgroup of P.

(a) Since C/D is elementary abelian, first C/Z(C) is elementary

and then [C, C] c D c Z(C). Hence cl C < 2.

(b) Since C/D c Z(P/D), [P, C] c D = Z(C).

(c) Suppose that Q = Cp(C) <fcc. Since Q n C = Z(C) = D we have

Q/D c P/T> and Q/D n C/D = 1. Of course Q c Cp(C) c Cp(D). If

Q*D, then Q/D intersects ft (Z(P/D)) n Cp(D)/D non-trivially.

This contradiction completes the proof. /

1. BAER'S THEOREM

The Theorem 1. 1 is required in the study of p-stable groups and

a proof due to Suzuki is given in [12]. Of course, it follows immedi-

ately from the result of Baer [15] p. 298, this proof being given below as

the first proof. Two other proofs of this result are given, both of which

are interesting and brief.

 
 

 



Theorem 1.1 (R. Baer). Let K be a conjugacy class of p-

elements in a finite group G. If (x, y) is a p-group for all x, y eK,

then Kco p (G) .

First Proof. Since (x, y) is ap-groupfor all x, y e K, for

all g e G , [x, g] = x"1xg and x are elements of the finite p-group

(x, x^). Hence

[g, x, x, . . . , x] = 1 after a while.

Thus x is a right Engel element and by Theorem III, 6. 15 [15],

xeF(G). Hence KcOp(G). /

Second Proof (J. H. Walters). Let G be a minimal counter

example to the Theorem. Let M , M , . . . , M, be all the maximal

subgroups of G containing a fixed element x € K.

Clearly O (G) = 1 since G is a minimal counter example.
If t = 1, then for all y e K, (x, y) c M , since (x, y) is a

p-subgroup of G and so is certainly a proper subgroup of G containing

x. Thus K c M . Let L = <K>. Then L c M c G and K c O (L)
= i = i = p

by induction. Since L < G, we have a contradiction.

Thus we have t > 1. Among all i, j with i =* j choose

D = M. n M. such that | D | is maximal. Let P be a Sylow p-subgroup

of D containing x.

We show that there is no loss of generality in assuming that P is

a Sylow p-subgroup of both M. and M.. For suppose that P c p., a

Sylow p-subgroup of M.. Then N r ( P ) n p . D P. Let M, be a maximal
1 vjr 1 K

subgroup of G containing NG(P) c G. Then Mfe n M. 2 NQ^P^ n P i D P

and so k = i by the choice of i, j . Also INU(P) c M. and so P is a
KJ = 1

Sylow p-subgroup of M.. Now choose n e N^fP) n P. - P, Then clearly
n ^ M . and so M. ^M.. Otherwise M. <l G and by induction

3 3 3 3 = n n
x € K n M. c op(M.) c Op(G) = 1, a contradiction. Now M => P = P
contains x and so Mn = M7 for some I. Take M. n M, as our re-

3 I 3 I
quired intersection. Note that P is a Sylow p-subgroup of both M. and

We derive a contradiction easily now. By induction

 
 

 



K nM. c O (M.) c p c M..
i = P i = = J

Hence K n M. c K n M..
i = J

Similarly K n M. c K n M..
Thus M. = N^«K n M.» = N_«K n M.» = M., a final contra-

j ^ 3 CJ I I
diction. /

Third Proof (J. Alperin and R. Lyons). [1] Again let G be

a minimal counter example. Let P be a Sylow p-subgroup of G. If

<K> is a p-subgroup, then K C O (G) since K < G. Thus <K> is not a

p-subgroup and so K <£ P. Let y e K - P and let Q be a Sylow p-sub-

group of G containing y. Then of course K n P + K n Q.

Among all Sylow p- subgroups P, Q of G such that K n p ^ K f i Q

choose P, Q so that |K n P n Q | is maximal. Since P x = Q for some

x e G, (K n p ) x = K n Q and so K n p <j_ Q, K n Q £ p . Let D = <KnpnQ>.

Suppose D = P c p c . . . c p = p where [P . + 1 : P.] = P-

Clearly K n p ^ D .

Suppose i is the smallest positive integer such that

K n P. £ K n D. Let x e (K n P.)-D. Since P <3 P., x normalizes

P. and so x normalizes <K n P. ) = D. Choose y e (K n Q)-P

similarly such that y normalizes D.

Then (x, y) is a p-group by hypothesis and so (x, y, D) is a

p-group also. Let R be a Sylow p-subgroup of G containing (x, y)D.

Then (x, D> c R n P implies that R = P while <y, D> C R n Q

implies that R = Q. This is a contradiction. /

2. A THEOREM OF BLACKBURN

This theorem duplicates some of the results of [12] - but its proof

is so beautiful that it should be included here. The following lemma is of

crucial importance for many of the results to come.

Lemma 2.1 (J. Thompson). Let a be a pT-automorphism of a

p-group G. Suppose that X is a p-group of automorphisms of G and

[a, X] = [a, CQ(X)] = 1. Then a = 1.

Proof. Let N c G be X-invariant such that [a, N] # 1, but

[a, K] = 1 for all X-invariant proper subgroups K of N. Then apply the

 
 

 



Three Subgroups Lemma, We have

[N, X, a] = 1 because [N, X] c N

and is X invariant.

[X, a, N] = 1.

Thus [a, N, X] = 1, [N, a] c CQ(X), [N, a, a] = 1. By 0. 2,

[N, a] = 1. This completes the proof. /

Lemma 2.2. Let a be a 7rT-automorphism of a TI-group G and

suppose X < < G is such that [a, X] = [a, CQ(X)] = 1. Then a = 1.

Proof. Let X < X < . . . < X = G and choose i such that
l n

[a> x
i + 1 ] * !> [a> x

{] = 1- L e t N = NG(X.). Since X.+ 1 c N,
[a, N] + 1. But

[X., N, a] = 1

[X., a, N] = 1.

Hence [N, a, X.] = 1, [N, a] c CG(X.) c CQ(X). Thus [N, a, a] = 1.

Lemma 0. 2 implies that [N, a] = 1. /

Lemma 2. 3 (N. Blackburn) [6], Let a be a pT-automorphism of

a p-group P. L;et E be an abelian subgroup of P, maximal of exponent

p , where n > 2 if P is a non-abelian 2-group and no restriction is

placed on n otherwise. If [a, E] = 1, then a = 1.

Proof. Let P be a minimal counter example.

If C = C (E) c p, then [a, C] = 1 by induction. By 2. 2, a = 1.

Thus E c Z(P).

Also, since E ± P trivially, <fr(P)E c p. Thus a centralizes

$(P) by induction. If C($(P)) c p, again we have

[a, #(P)] = [a, Cp($(P))] = 1 since E c C(*(P)). By 2. 2, a = 1 again.

Thus P has class at most 2 and $(P) c Z(P).

Choose x e P and consider [x, a]P .

[x, af^Cx^xV^x-^VV1, x^fV

 
 

 



If P is abelian then of course [x , x ] = 1. On the other hand,
if P is non- abelian, then

r a - i l P
n ( p n - l ) / 2 _ r a - P / - V - D / 2

[X , X J — [X , X j

since if p = 2, n > 2. But x"P e $(P) c Z(P) for all x e P. Thus in

every case we have

n n
Since [a, *(P)] = 1 and xp e $(P), we see that [x, a]p = 1.

By the maximality of E, [x, a] e E, for all x e P , Thus [P, a] c E

and [P, a, a] = 1. By 0. 2, [P, a] = 1 and so a = 1. /

Theorem 2. 4. Let P be a p-group. If a is a pT-automorphism
of P which centralizes to (P) then a = 1 unless P is a non-abelian
2-group. If [a, to (P)] = 1, then a = 1 without restriction. /

3. A THEOREM OF BENDER

Theorem 3.1 [2], Let G be a p-constrained group. If p = 2

assume that the Sylow 2-subgroups of G have class < 2 . Let E be an

abelian p-subgroup of G which contains every p-element of its centralizer.

Then every E-invariant pT -subgroup H of G lies in O ,(G).
p

Remark 1. If E is a self centralizing normal subgroup of a
Sylow p-subgroup of G, then E contains every p-element of its central-
izer in G. For let E e SG3l(P) where P is a Sylow p-subgroup of G.
Suppose that D => E is a Sylow p-subgroup of Cp(E). Consider Np(E).
Suppose that Q is a Sylow p-subgroup of Np(E) containing D. Since
P c N (E), there exists n e N-(E) such that Qn = P. Then

= G CJ

D c P n C^(E) = E. Hence D = E is a Sylow p-subgroup of CO(E). By
Burnside's Theorem, Cn(E) = E x O T(CO(E)).

G p G
Remark 2. Theorem 3. 1 cannot hold without restriction if p = 2,

even if G is solvable. Consider for example G = GL(2, 3), E c G a
fours-group. Then O ,(G) = 1, CG(E) = E, but there is a subgroup of

 
 

 



order 3 which is normalized by E. Note that a Sylow 2-subgroup of
GL(2, 3) has class 3.

Proof. Let G be a minimal counter example. The proof pro-

ceeds by a series of steps.

1. OpT(G) = 1.

Otherwise, let G = G/O f(G). Since C^(E) = C^(E), by 0. 3, we

have H c O f(C) = 1. Thus H c O T(G).

Let R = O (G) and let Q * 1 be a minimal E-invariant pT-sub-

group of G. If RQE c G, then Q c O ,(RQE) by induction. Hence

[R, Q ] c o t(RQE) n R = 1. Since CG(R) c R by p-constraint we have

2. G = RQE.

Let S be a QE-invariant subgroup of G minimal with respect to
[Q, S] * 1. Then S is a special p-group. The argument which verifies

this is standard. See for example [12],

If S is abelian, then S = Cg(Q) © [Q, S] by 0. 5. But [Q, S] is

an E-invariant p-subgroup and so Cp(E) n [Q, S] * 1. Thus E n[Q, S]*l

by our hypothesis on E. On the other hand [E n [Q, S], Q] c Q n S = 1.

This contradicts Cg(Q) n [Q, S] = 1.

If S is non-abelian and p is odd, we use a remarkable idea of

Bender, or perhaps of Baer. First by 2. 4, since [Q, S] * 1, and S is

minimal, S = to (S) has exponent p. Let T be a new group defined as

follows: T = S qua set.

Every element x e S has a unique square root x2 e S, since p

is odd. Define a binary operation o on T as follows xoy = x 2 y x 2 .

It is routine to check that T is an elementary abelian group. Also

QE acts as a group of automorphisms of T. Since S = T as sets, the

fixed points of both Q and E on T are unchanged. But we have already

reached a contradiction when S is abelian. This same argument can be

applied to TQE.

If p = 2 and S is non-abelian, first [E, S] c Z(S) since SE has

class <̂  2. Thus

[S, E, Q] c [Z(S), Q] = 1
[Q, S, E] c [S, E] c z(S).

 
 

 



Hence

[E, Q, S] c Z(S).

If [E, Q] * 1, then [E, Q ] c Q stabilizes the chain S 2 Z(S) 2 1.

Hence [E, Q] c CG(S) by 0. 1. Since [E, Q] is an E-invariant subgroup

of Q, minimality of Q ensures that Q = [E, Q] c CG(S). This is a

contradiction.

Thus we may assume that [E, Q] = 1. Since [S, E] c s is
then Q-invariant, minimality of S ensures that [S, E, Q] = 1. Also
[E, Q, S] = 1. It follows that [Q, S, E] = [S, E] = 1. Our assumptions
on E now give S c E and [S, Q] c Q n S = 1. This contradiction
completes the proof. /

Lemma 3. 2. Suppose P is a p-subgroup of a p-constrained

group G. Then On t(Nr(P)) c O . (G).

Proof. Since G is p-constrained, it follows from 0. 3 that

G/O T(G) is p-constrained. Let G = G/O t(G) etc. By induction we

have Opf(Ng(P))cOpf(5) = l. But clearly Opt(Ng(P)) = Opt(CG(P)) =

Opf(CG(P)) by 0.3. Thus OpT(N^(P)) = O t(CG(P)). Since
O .(Nr(P)) c Cr(P), it follows that O ,(Nr(P)) c O .(G) in this case.

P U = Ur p Lr = p

Hence we may assume that O T(G) = 1. Let M = O (G), Q = O T(Nr(P)).

Since [Q, P] = 1 and [Q, CM(P)] c M n Q = 1 we have [Q, M] = 1 by

2. 1. Hence Q = 1 because Cr(M) c M by p-constraint.

Remark. The reader should refer to Lemma 12.5,12. 6 due to
Bender for a far reaching generalization of this result.

Lemma 3. 3. If G is a p-solvable group of odd order and P iŝ
a Sylow p-subgroup of G such that r(P) < 2, then G has p-length 1.

Proof. Let G be a minimal counter example. Clearly

O f(G) = 1. Let R = O (G). Since G is p-constrained, CQ(R) c R.

Let C be a Thompson critical subgroup of R and let D = £1 (C). Since

| G | is odd and C has a class < 2, D has exponent p.

Since r(P) < 2, r(D) < 2. If |z(D)| > p2, then D=Z(D) and if

 
 

 



|Z(D)| = p then any subgroup of type (p, p) containing Z(D) has
3 3

centralizer of index < p. It follows that |D| < p . Also D| = p
only if D is non-abelian of exponent p. Let D = D/*(D). Then C~(D)

Or

is still a normal p-subgroup of G and so C^(D) c R. But

G/Cr(D) c GL(2, p). But any odd order subgroup of GL(2, p) has a

normal Sylow p-subgroup.
Thus G = O , (GmodCn®) and so G = O t(G). /p,p G p,p

Lemma 3. 4. If G is a solvable group of odd order and P is a
Sylow p-subgroup of G such that PT is cyclic, then G has p-length 1.

Proof. Let G be a minimal counter example. First O T(G) = 1
clearly. Let R = O (G). Then C j R ) C R since G is solvable.

P _ ^ ~~ _ _
If $(R) + 1, let G = G/$(R). Since PT is cyclic, G has p-length

1. Let Q$(R) = O .(G mod $(R)) where Q is a pT-group. Then
[Q, R] c $(R) and so Q centralizes R modulo $(R). Thus [Q, R] = 1.
Hence O ,(G mod $(R)) = 1 and G has p-length 1.

Thus we have that R is an elementary abelian p-group. Let
x e P. Then [x, R] c P' n R, a cyclic subgroup of order p. Thus

[x, R] c Z(P) and [R, x, x] = 1.

Hence x acts on R with quadratic minimum polynomial. For a
discussion of this see the Appendix p. 80. By the famous Theorem B of
Hall and Higman [x, R] = 1. Thus P = R and the Lemma is proved. /

4. THE TRANSITIVITY THEOREM

Included here is a proof of a rather unsatisfactory form of the

Thompson Transitivity Theorem. This is proved completely in [12]. The

proof given here is shorter but the Theorem is less general. More

precisely, for the case of odd primes, the Theorem is more general;

but for p = 2 it deals only with groups, whose Sylow 2-subgroups are of

class at most 2. I do not know of any slick way to prove the general

result. The final difficulty arises from the fact that a subgroup can be

self centralizing and normal in one Sylow p-subgroup of a group but con-

tained in another Sylow p-subgroup non-normally. The Theorem 3.1 is
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used to overcome this difficulty by replacing the elements of SG31 by

a rather larger class of groups. By this means we lose the case p = 2,

class > 3. No matter: the result as stated suffices for the results in

these notes.

Before stating the Main Theorem, we prove a couple of auxiliary

results.

Lemma 4.1. If P is a p-subgroup of G such that INU(P) is

p-constrained, then C~(P) is also p-constrained.
(jr

Proof. First Opt(NQ(P)) = Qpf(CG(P)), clearly. Using 0. 3,

we may assume that O t(N^(P)) = 1. Let N = N^(P), C = C^(P),p Lr G G
Q = O (C), R = O (N). Since Q char C < N, Q C R n c . Since

R n C < C, R n C c Q and so Q = R n C.

Let x e Cn(Q) be a pT-element. Then [x, R] c R n C = Q. Thus

x stabilizes the chain R D Q => 1 and so by 0.1, x e C (R) c R since N

is p-constrained. It follows that Cr(Q) is a p-subgroup, normal in C.

Thus C (ft) c Q and C is p-constrained. /

Lemma 4. 2. Suppose that A is an elementary abelian p-group

such that r(A) = 3. If_ P, Q are A-invariant p'-groups, there exists

a e A such that C (a) * 1, CQ(a) * 1.

Proof. Let V be a subgroup of A of type (p, p). Since
# #

p = <Cp(v) : v € V ), there exists v e V such that C (v) * 1. Let

W c A such that W is of type (p, p) and W n (v) = 1. There exists

w eW such that Cp(w) n Cp(v) ^ 1, since Cp(v) is W-invariant. Then

(v, w) is of type (p, p) and acts on Q. Thus there exists an element

a €<v, w) # such that CQ(a) ^ i. since Cp(a) D Cp(w) n Cp(v) * 1, we

are done. /

Theorem 4. 3. (Transitivity Theorem) [8]. Let G be a group

in which the normalizer of every non-trivial p-subgroup is p-constrainted.

If p = 2, assume that a Sylow p-subgroup of G has class <̂  2. Let E

be an abelian p-subgroup of G such that r(E) > 3 and such that E con-

tains every p-element of C = C^(E). Then O .(C) acts transitively on(j p
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the elements of M*(E, q) where q is a prime, q * p.

Proof. Let S , S , . . . , S be the O f(C) orbits of elements of
H*(E, q) and suppose that t > 1. Then clearly I/I* (E, q) * {l}.

Consider now R = S. ns . for subgroups S. e S., S. € S., where
i * j and suppose that R is chosen of maximal order. For convenience,
write i = 1, j = 2. Of course, R c S , R c S .

Now N = N r ( R ) 3 E , Consider N=N(R)/R. Let T. = NHS.3R.
Lx = 1 1

Then T. = T./R, i = 1, 2 are E-invariant, non-trivial, and so by
i i #

Lemma 4. 2, there exists e e E such that C™ (e) * 1, i = 1, 2. By
I

0. 3, C= (e) = C (e) and so (Cr(e) n T.)R 3 R. By hypothesis and
1 1 tr 1

Lemma 4. 1, C~(e) = H is p-constrained, and C~(e) 3 E.
(jr Lr =

Let P. = T. n H. Then P.R 3 R. Remember P. c N^(R). Now
1 1 1 1 = KJ

P. is E-invariant and by 3.1, P. c O T(H).
Let L = R(N n H). Since P. c O t(H) n N c O r(N n H), P ^ O T(L)

because R < L and R is a p'-group. Thus RP. c O t(L), i = 1, 2.
Let Q. 3 P.R be an E-invariant Sylow q-subgroup of O t(L),

i = 1, 2. There exists x e CG(E) n O f(L) such that Q^ = Q2 by [12],
6. 2. 2. Since (x) is an E-invariant pT-subgroup of Np(E), which is p-
constrained, 3.1 ensures that x eO f(N^(E)), x cO T(C^(E)).

p G p (jr

Let U e M*,(E, q), U D Q^ Then U n s ^ Q i
 f]S

l2
 P

X
R D R-

By choice of R, U e S .

But Ux n S 3 Qx n S = Q n S 3 p R D R. NOW since x eC(E),

UX is a maximal element of H(E, q) clearly. By the choice of R,

Ux € S and so U € S . Thus S = S .
2 2 1 2

5. THE UNIQUENESS THEOREM
This and the next two sections are devoted to a proof, due to

Bender, of the Uniqueness Theorem 5.1 [3].

Theorem 5.1. Let G be a minimal simple group of odd order.

Let U be an elementary abelian p-subgroup of G of order p3. Then

there is one and only one maximal subgroup of G containing U.
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Remark. This major theorem shortens much of the group

theoretic Chapter IV of the Odd Order paper [8] of Feit and Thompson.

It should be pointed out that if a group G of odd order contains no ele-

mentary abelian p-subgroup of order p for any prime p, then G is

not simple. In fact, such a group has an ordered Sylow tower, see [8],

If there is one and only one maximal subgroup M containing a

subgroup V C G , then we call M a uniqueness subgroup.

Theorem 5. 2. Let G be a finite group, H a maximal local sub-

group of G, F = F(H). Let X = C1J(F), ir = TT(F). Assume that

I771 > 2- Choose M a subgroup of F satisfying C^M) c M and let R

be a solvable subgroup of G normalized by MX. Then for any prime

q e TTT, l/lR(M, q) has only one maximal element and this is a Sylow q-

subgroup of O t(R).

Proof. Since O r(R) c o ,(RM) c o ,(R), we may replace R by
1J = 77 = 77

RM and assume that M c R. The proof is divided into a series of steps.

(i) If Y is a ?r!-subgroup of R normalized by M, then

Y n H = 1.

(The reader should consult Theorem 12. 4(a) for an appropriate

generalization of this step.)

First Y n H centralizes M since [Y n H, M] c F(H) n Y = 1.
But C _ ( M ) C M . Now consider (Y n H)F. Let p e 77. If x e ( Y n H ) F

r —
is a p-element centralizing M , then of course x e F and

P P
x e C_(M ) n C_(M t) = C^M) c M. Thus M has the property that it

r p r p r = p

contains every p-element of its centralizer in (Y n H)F. Since this group

is clearly p-constrained, we may apply 3.1 to get Y n H c O t((YnH)F)

for all p e 77. Thus [Y n H, F] = 1 and so Y n H c CW(F).
X ~~

Now K = (Y n H) is a subgroup of R and so is a solvable

X-invariant group. Thus Y n H c S(X) n H c S(H) n C,.(F) C F by the

well known property of Fitting subgroups of solvable groups. Since Y

is a 7rT-group and F is a 77- group, Y n H = 1.

(ii) If Q €HR(M, q), q e ir', then QC0 f f ! (R) .

We show Q c O t(R) for all p e ir. For such a prime p, we have
M = M X L and since |TT| > 1 and M => C^CM) we must have L * 1.

p = F
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Since Mp => Z(F(H)p), CG(Mp) c CG(Z(F(H)p)) c H. Now

L c Op,(H) n CG(Mp) c Op,(CG(Mp)) c Op,(NG(Mp)). By 3. 2, L c Op,(R)

since R is solvable and so [L, Q ] c o ,(R). We show that [L, Q] = Q.

For Q = [L, Q]C (L) by 0. 4, and CnCL) c H since L contains a non-

trivial normal subgroup of H, namely Z(F(H) t). Thus C Q (L)cQnH=l

by step (i). Hence Q = [Q, L] c Offt(R).

We have thus shown in (i) and (ii) that every element of

|/| (M, q), q € v\ lies in O T(R). On the other hand, some Sylow q-
rv 77

subgroup of O T(R) is certainly M-invariant and the M-invariant Sylow

q-subgroups of O T(R) are conjugate under CO(M) n O t(R) = 1. Thus
77 Ijr 77

|/L(M, q) has a unique maximal element. //

Theorem 5. 3. Let G be a minimal simple group of odd order,

H a maximal subgroup of G, U an elementary abelian p-subgroup of

F = F(H) such that

(i) I u | > p 3 ;
or (ii) | u | = p 2 and U c A e S6Cfl3(p).

Set M = CF(U), 77(F(H)). Assume \ir\ > 2. Then for any prime

q €* ' , MG(M, q) = 1.

Proof. We show that 1/1 r(M, q) has a unique maximal element.

For then if Q is this unique maximal element of l/U(M, q), since

N_(M) permutes the maximal elements of l/L(M, q) under conjugation,
F Cjr

it follows that Q is the unique maximal element of |/|_(N_(M), q). After

awhile, since F is nilpotent, I/L(F, q) has a unique maximal element
and then I/U(H, q) has a unique maximal element. But by the maximality

G
of H, Q c H and so Q = 1 because O (H) = 1.

The proof that Hr(M, q) has a unique maximal element follows

closely the proof of the Transitivity Theorem 4. 3.

Suppose that Q, R are maximal elements of |/U(M, q) and suppose

Q, R have been chosen distinct such that |Q n R | is maximal.

If Q n R * 1, let K = Nn(QnR). Apply 5. 2 with K in place of R.
(jr

We get |/| (M, q) has a unique maximal element S, say. Because
K n Q, K nR €HK(M, q), <K n Q, K n R) c s. Since SnQDKnQDQnR,
if S* eMi(M, q), S* => S, choice of Q, R ensures that S* = Q. But

Cjr =
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again S* = R, a contradiction. Thus Q n R = 1 and any two maximal
elements of |/U(M, q) are disjoint.

#
Let x e U and apply 5. 2 to Cr(x). It follows that \A , x(M, q)

has a unique maximal element T. We show that there exists x e U such

that CQ(x) * 1, CR(x)*l. But <CQ(x), CR(x)> c T. Let T* e M*,(M, q),

T* 3 T. Then T* n Q D C~(X) * 1 whence T* = Q. But again
= — W

T* n R D C_(x) * 1 and so T* = R. This is the required contradiction.
If IU | > p , we are clearly done by 4. 2.
We may therefore assume that |u | = p2 and U c A e S631 (p).

Clearly Q, (Z(F ) ) c u since otherwise we could replace U by
U£2 (Z(F )), an elementary abelian group of order > p3. Thus

G = G 1 P = n.

Now Q = (C~(x) : x e U ). As already noticed, Co(x) has a
V2 G

unique maximal M-invariant q-subgroup, X say. If x e U f is such that

C (x) * 1, then letting X* e |/|*,(M, q), X* D X, we have X* nQDC (x)#l

and so X* = Q. Thus X = C,Jx). Now A normalizes M = C_(U).

Hence A permutes the elements of I/U(M, q) under conjugation. Thus
A c r (x) normalizes C~(x) whenever C^(x) ± 1. It follows that A

= G < ^ (c^
normalizes Q. Similarly A normalizes R.

But by 4.3, Q andR are conjugate by an element of O t(Co(A)).
p G

Since CO(A) c cp(U) c H, there exists h e C f̂A) such that <Qh, R>G = G = H
is a q-group. But heCr(U) normalizes M. Hence M normalizes

h h h
Q , R and so M normalizes <Q , R> 3 R. It follows that Q CR
and so Qh = R. Now if u e U is such that C^(u) * 1, then CLJu11) * 1.

h ^
Since heCo(U), u = u. Hence there is an element u e U such that
C~(u) * 1, C_,(u) * 1. This completes the proof. /

Theorem 5. 4. Let G be a minimal simple group of odd order,
M a subgroup of F(H) containing Z(F(H)), n = 7T(F(H)). Assume that
177 | > 2 and |/| (M, TTT) = {l}. Then H is the only maximal subgroup
of G which contains M.

Proof. Suppose that L is a maximal subgroup of G which con-

tains M. Clearly u(F(L)) c 77 since M^(M, 77') = 1. Because

Z(F(H)) c M, the centralizer of any Hall subgroup of M is contained in
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M, as we have seen before. Then if a c TT,

MaT c C G (M p ) n OaT(H) c O a ? (C G (M p )) , where p e a .

Therefore M^ c O f(C (M )) n L c O T(C (M )) for al l p e a .

By 3. 2, M a , c O f(L) for all p e a . Hence M a , c O a t (L) . Thus

M a ? c C (F(L)a) and F ( L ) a c C G (M a ? ) c H, for every subset a c v. If

a = TT(F(L)) * n, we see that M t c CG(F(L)) c F(L), a a-group. Thus

77 = 7T(F(D).

Taking a = n - p, we now have M t = M c o (L) centralizes

F(O p f (L) )DC Q (L)(F(Opt(L))). Thusby 2. 2, [Mp, Opt(L)] = 1 andso

Opf(L) c H.

But O (L) c F(L) c H and CG(O (L)) c L. Hence

Opf(L) c Opt(CG(Op(L))) n H c OpT(CH(Op(L))). By 3. 2, OpT(L) c Opt(H).

By symmetry, O , ( H ) c o T(L) and since O t(H) * 1 we have

H = NG(Opt(H)) = NG(Opt(L)) = L. /

Theorem 5. 5. Let G be a minimal simple group of odd order,

p a prime, H a maximal subgroup of G satisfying O t(H) * 1, V an

elementary abelian subgroup of order p of G such that Cr(x) c H
j {* —

for all x e V . Then H is the only maximal subgroup of G containing
V.

Proof. Let P be a Sylow p-subgroup of H containing V.

Every pT-subgroup of G normalized by V is contained in H. Hence

the subgroup <I/U(P, pT)> c H. Let
Li =

Pi = P n Op t (H), Q c MG(P, P'), Q C H .

Then [ P ^ Q j c Q n O p . ) P ( H ) i Op-(H)- T h u s

QOp,(H)/Op,(H) c CH ^ ( P ^ = CH(Pi)Op,(H)/Op,(H).

Since H is ap-constrained, CH(P ) £ O t (H). Thus

Q c O t (H) and so Q c O T(H). It follows that '<MG(P, PT)> 5E

O.ffl €Mn(P, Pf). Hence <|/lr(P, PT)> = 0 .(H).p G u p
Now N^(P) permutes the elements of |/ITT(P> PT) under con-

jugation and so normalizes <I/U(P, p1)) = 0 t(H) * 1.
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Thus Nr(P) c H. Hence P is a Sylow p» subgroup of G.

Choose L 3 V, L * H such that

(i) | L n H | is maximal and then

(ii) | L | is maximal and then

(iii) | L | is maximal.

Let R be a Sylow p-subgroup of L n H containing V. There is

no loss of generality in assuming R c p replacing V by an H-conjugate

if necessary. If R = P, then NQ(R) c H. If R e p , then Np(R) => R

and by the choice of L, H is the only maximal subgroup of G containing

N (R). Thus Nr(R) £ H in every case. Clearly R is a Sylow p-sub-

group of L.

We have O T(L) c H because O f(L) is V-invariant.
P = P

Set S = R n O t (L) < R. Since L = O f(L) NL(S) and
O ,(L) c H, L * H, NG(S) £ H. Thus Np(S) = R and S * R. Because
| L | < | N ^ ( S ) | , we may assume that NP(S) c L.

p = G p G =
Now a solvable group of odd order with a Sylow p-subgroup of

rank < 2 has p-length 1 by 3. 3. Since L does not have p-length 1,

r(R) > 3. Thus P ^ R contains a 3-generated abelian subgroup and by

[8] Lemma 8. 4, Seoi^P) * 0. Let A e seo i^P) .

If x e NA(S) c L, then [S, x, x] = 1. The p-stability of L, a

solvable group of odd order, shows that x e O (N (S) mod C (S)) =
O T (L). Thus N (S) c S and A c s .p , p A — —

Now let q be a prime different from p. The Transitivity

Theorem 4. 3 ensures that if Q e M*,(A, q), n e NG(A), then Qn e MQ(A, q)

and even Qn €|/|^(A, q) because all elements of H i (A, q) have the
nc

same order. Moreover, there exists c eO ,(Cp(A)) such that Q = Q.

Hence Nr(A) = (Nr(Q) n Np(A)) O_,(C_(A)). But P c v,(A) is a Sylow
G G G P ^ . i = G

p-subgroup of Np(A) and so there exists m" € Nr(A) such that

P m c NQ(A) n NG(Q).

Then Qm is P-invariant. Thus if Q el/|£(A, q), there exists a

conjugate Qm eM*,(P, q). We have already seen that <M*,(P, q)>co f(H).

Thus at least one element of 1/1* (A, q) is contained in O t(H).

But CG(A) = AxOpT(CG(A)) and O t(CG(A)) char CG(A). Now

V normalizes A, CG(A), O f(CG(A)) and so O , ( C G ( A ) ) C H . Since
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O t(Cr(A)) acts transitively on the elements of M£(A, q) and one of them

lies in Opt(H), <I/|*,(A, q)> c Opf(H). Since S < A, l/|*,(S, pT) = O (̂H)

and NO(S) c N^(H* (S, pT)) = H, a contradiction. /

6. THE CASE |TT(F(H))| = 1

The Theorems 5. 2, 5. 3, 5. 4, 5. 5 are directed towards the case

1771 > 2. When F(H) is a p-group, it was very soon recognized that

similar results were implied by the Glauber man ZJ-Theorem.

Let G be a minimal simple group of odd order, H a maximal

subgroup of G containing a Sylow p-subgroup P of H for which

Seal (P) * 0. Let A e Seal (P) and assume that F(H) is a p-group.

The first observation is that P is in fact a Sylow p-subgroup of G and

moreover N ,̂(P) c H.G =

L e m m a 6 . 1 . M G ( A , pT) = i l l a n d . N Q ( P ) c H.

Proof. Since H is p-stable, any element A e seal (P) is con-

tained in O (H) = F(H) => CG(F(H)). Thus Z(F(H)) c A and

CG(A) c CG(Z(F(H))) c H. But by 3. 2 OpT(CR(A)) c o t(H) = 1 and so

CG(A) = A. By the ZJ-Theorem of Glauberman [9],

Z(J(P))<]H. Hence NQ(P) c N(Z(J(P))) = H.

Now take any prime q * p. From the Transitivity Theorem 4. 3,

since Cp(A) = A, l/lp(A, q) has only one maximal element. Since

A < F(H), I/I* (F(H), q) has only one element and then |/|£(H, q) has only
= CJ G

element Q. Since H is maximal in G, Q c H and then Q c O (H) = 1.
Thus IAJA, q) = 1 and so \AAh, pf) = 1. /G G

Lemma 6. 2. H is a uniqueness subgroup for P.

Proof. For if L is another maximal subgroup of G containing

P, 6.1 implies that O T(L) = 1 and then the ZJ-Theorem ensures that

L = N(Z(J(P))) = H. /

More surprising we see that H is in fact a uniqueness subgroup

for A.
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Lemma 6. 3. H is a uniqueness subgroup for A.

Proof. Suppose L is another maximal subgroup of G con-

taining A. Choose L in such away that |H n L | is maximal. Let

Q be a Sylow p-subgroup of H n L containing A. If Q is a Sylow

p-subgroup of H, then Q = P h , h e H, and so NQ(Q) c H. If | Q | < | H | ,

then !SL,(Q) c H by the choice of L. Thus in any case Q is a Sylow

p-subgroup of L.

Since O t(L) = 1 by 6. 1, L=NQ(Z(J(Q))). But then Q is a Sylow

p-subgroup of G and also of H. This contradicts 6. 2. /

Lemma 6. 4. Let V be an elementary abelian subgroup of order

p2 of H and suppose that CG(x) c H for all x e V . Then H is a

uniqueness subgroup for V.

Proof. Suppose that L is another maximal subgroup of G

containing V and choose L so that | L H H | is maximal. Let Q be

a Sylow p-subgroup of H n L containing V. Again Q is a Sylow p-

subgroup of L. By the ZJ-Theorem L = O ^ L ) ^ (Z(J(Q))). Since by

hypothesis Opl(L)CH,N(Z(J(Q)))|H. Since |N R (Z(J (Q)) ) | > | Q |

we have a contradiction. /

Lemma 6. 5. Let X c y c p where Y is an elementary abelian

group of order p3, | x | = p2. Then H is a uniqueness subgroup for X.

Proof. Let V be a Y-invariant subgroup of £1 (A) of order p2.

Let V = CV(V ). Since Y/CV(V ) is a subgroup of GL(2, p), it has
i i #

order at most p. Thus | V | > p 2 . If x e V , CG(x) => A, and since H

is a uniqueness subgroup for A, Cn(x) c H. By 6. 4, H is a uniqueness

subgroup for V^ Now if x e V 2 , C Q ( X ) 2 v
x and so CG(x) c H. By

6. 4 again, H is a uniqueness subgroup for V . Finally, if x e X,
C G ^ = Y = V a n d S 0 C G ^ = H# B y 6# 4 y e t again> H i s a

subgroup for X. /
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7. THE PROOF OF THE UNIQUENESS THEOREM 5.1

We commence the final attack on 5. 1 having established in §5 and

§6 uniqueness theorems sufficient for the task. Thus we fix G a minimal

simple group of odd order, P a Sylow p-subgroup of G for which

Seal (P) * 0, H a maximal subgroup of G containing N^(P), if P is
3 Ijr

abelian, and containing NJZfP) n P') D N (P) otherwise. Let
A € Seal (P) and A = Q (A).

3 V 0 1 V ;

We show that H is a uniqueness subgroup for A and establish

5. 1; but note that we will have in fact established that H is a uniqueness

subgroup for every elementary abelian p-subgroup of order p which lies

in an elementary abelian p-subgroup of P of order p3. In fact this is

precisely the statement of 6. 5 if F(H) is a p-group, while if not, suppose

that H is a uniqueness subgroup for A c p. Let X c y c p where Y

is of type (p, p, p), | x | = p2. Let Y normalize V c Q, (A) of order

p2 and let V = CV(V ). Then if x € V#, Cn(x) D A and so Cr(x) c H.
2 x 1 I L J — u \J —

By 5. 5, H is a uniqueness subgroup for V . Now if x e V , Cp(x) 3 V

and so Co(x) c H. We use here 5. 5 since V is non-cyclic to get that
2 ji

H is a uniqueness subgroup for V . Finally if x e X , Cp(x) 3 V and

so Cp(x) c H. By 5. 5 again, H is a uniqueness subgroup for X.

We thus show that H is a uniqueness subgroup for A. We say

that a maximal subgroup X of G is of uniqueness type and q is a

uniqueness prime if there exists a prime q such that F(X) has an ele-

mentary abelian q-subgroup U such that

(i) |u | > q3 or

(ii) |u | =q 2 and UCA e Seai^q).

Assume that H is not a uniqueness subgroup for A. Note that if

F(H) is an r-group where a Sylow r-subgroup R of H satisfies
(R) ± 0, then H is a uniqueness subgroup for every elementary

abelian subgroup U of R of order r which lies in an abelian subgroup

V or R of type (r, r, r) by 6. 5.

Suppose on the other hand, | TT(F(H)) | > 2. Then, if U is an

elementary abelian r-subgroup of F(H) of order > r or of order r

contained in an element of Seal (r), it follows from 5. 3 that

t/U(M, 7T?) = {1} where M = C«(U), F = F(H). Then by 5. 4, H is a
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uniqueness subgroup for M. Now if V c U is a subgroup of order r 2

and x e V#, C~(x) => M from which it follows that Co(x) c H. Now
CJ = G =

apply 5. 5 to get that H is a uniqueness subgroup for V.

Thus a subgroup H of uniqueness type is a uniqueness subgroup

for very many subgroups of H.

The proof of 5.1 hinges on the study of subgroups of uniqueness

type. First we show that subgroups of uniqueness type exist in G.

Lemma 7.1. H is a subgroup of uniqueness type.

Proof. Suppose that H is not of uniqueness type. Then F(H)
does not contain an elementary abelian subgroup of order q3 for any
prime q and a Sylow p-subgroup of F(H) is cyclic. For if F(H) is
non-cyclic, since F(H) n p ^ P , there exists V <] P of type (p, p),

V c F(H) . But every such normal subgroup lies in an element of
Seal (P). For let A e seal (P), A c A a normal subgroup of P of
type (p, p, p). Since Cw(V)nAi has order > p 2 , V(CH(V)nA ) c p

r i 1 = Jtl 1 —

and is elementary abelian. If CH(V)nA £ V, then V lies in a > 3-
generated abelian normal subgroup of P while if CU(V) nA c v,
V c A .

= l

Let Q = F(H) , where q is a prime q =£ p. If P does not

centralize Q, let R = Q, (C) where C is a Thompson subgroup of Q.

(See 0. 4.) By 2. 4, [P, R] * 1. Since r(Q) < 2, r(R) < 2 and so

| R | < q3. Let R = R/^(R). Then P acts non-trivially on R and

H/C^fR) is an odd order subgroup of GL(2, q). It follows that
ri

( H / C H ( R ) ) T i s a q - g r o u p a n d s o P n HT c C R ( R ) . T h u s P O H ' c C R ( Q ) .This holds for all q * p. Since H/C^FOH) ) is abelian because F(H)
H p p

is cyclic, P n H ' c CXT(F(H) ) and P n HT c r(F(K)) c F(H).
= ri p = ri =

If P is abelian, then fusion of elements of P is controlled by

Np(P) by the well-known Burnside Lemma. Thus the focal subgroup

(x"1xg : x e P, g e G, x g e P) = S satisfies

S = <x"1x11 : x € P, n e NG(P) (c H ) ) c p n H ' c F(H).

Thus by the application of the transfer we have P n G ' c F(H).
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Since G has no non-trivial p-factor group, P c F(H) is cyclic. This

is not the case.

Hence Pf * 1. But since P n HT c F(H) we must have P nF(H)*l.

Let Z be the subgroup of order p contained in F(H). If Z c H n Hg

where g e G - H, choose g so that |H n Hg| is maximal. Let S be a

Sylow p-subgroup of H n Hg and assume without loss of generality that

S c P. Since Z < H, Z lies in every Sylow p-subgroup of H. If

S = P c H n Hg then P, Pg"1 c H and so P = -pS'\ h e H. But then

g-1h € Nr(P) c H, geH , a contradiction. Therefore S c p.

Let T be a Sylow p-subgroup of N (S). Then T 3 S and so

N (T) c H by the choice of Hg. Hence T is a Sylow p-subgroup of

NG(S). Since P n HT c F(H), Tf c F(H) and so TT is cyclic. By 3. 4,

NG(S) has p-length 1.

Thus NG(S) = O t(NG(S))(NG(S) n NQ(T)) by the Frattini argument.

Since N (S) £ H, Nr(T) c H, O ,(N (S)) £ H. But O f(Nr(S)) c r ( S ) c

CG(Z) c H. This contradiction shows that if Z c H n H ,̂ then g e H.

Now let x e P, xg € P. Then Z c Z(P) and so Z, Zg c C (x).

Choose y e CG(z) such that (Z, Zg y) is a p-group and then find

z e G such that <Z, Zg y ) Z c P. Then we have first Z, Zz c p whence

z cH and then Z, Zg y z e P whence g-1yz e H. Thus g~ly e H.

Hence xg = xy g where y^geH since y e C J x ) . Thus H controls
p-fusion.

Transfer now yields P n G ' c p o H ' c F(H). This contradicts
the simplicity of G. /

We devote the next several lemmas to a study of subgroups of

uniqueness type, now being certain that they exist. Fix our notation so

that X is a subgroup of uniqueness type, q is a uniqueness prime. Let

B = SI (Z (F(X) )). Remember that H is not a uniqueness subgroup

for A, otherwise we are done.

Lemma 7. 2. Either X is a uniqueness subgroup for every sub-
group of order q2 of B or B is non-abelian of order q3 and X is a
uniqueness subgroup for every subgroup of order q2 of B which is
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normal in some Sylow q-subgroup of X.

Proof. If | B | > q4 then every subgroup V of order q2 of B
lies in an elementary abelian subgroup U of order q3 of B. For if
Z(B) £ V, the result is clear and if Z(B) c V either V = Z(B) in which
case the result is trivial using exp B = q, or Z(B) c v, |z(B) | = q. But
then V< B since BT = Z(B) and so B/CR(V) has order < q. Thus
IC—CV) I > q and we are done.

JD
 = =

If 7r(F(X)) = {q }, then 6. 5 shows that H is a uniqueness subgroup

for V. If TT(F(X)) => {q}, then 5.4 implies that l/tr(M, TTT) = 1, where

M = C /vx(U). Then 5. 5 implies that X is a uniqueness subgroup for M.

Now if xeV c U, Co(x) 3 M and so C~(x) c X. Thus X is a unique-
= Ijr = Cjr =

ness subgroup for V by 5. 6.

We may therefore assume that | B | < q3. If B is abelian of

order q the above argument applies. We have already remarked that

X is a uniqueness subgroup for some q-subgroups of X and so X must

contain a Sylow q-subgroup Q of G! Now any normal subgroup V of

Q of type (q, q) lies in an element of S(23l (Q) by a familiar argument.

Thus by the remark at the beginning of §7 we see that X is a uniqueness

subgroup for V. This completes the proof. /

Lemma 1.3. If V c Y c X, where Y is of type (q, q, q) and

|v | =q 2 , then X is an uniqueness subgroup for V.

Proof. By 7. 2, Y normalizes a q-group U of order q and

type (q, q) for which X is an uniqueness subgroup. Thus |cy(U)| > q2

since Y/Cy(U) c GL(2, q). If x e Cy(U)#, then CG(x) => U and so

CG(x) c X. By 6. 6 and 5. 5, X is a uniqueness subgroup for Cy(U).

Thus X is a uniqueness subgroup for V by 6. 6 and 5. 5 again, since if

x € V#, CQ(x) D Y D Cy(U) and so CQ(x) e x . /

Lemma 7.4. The uniqueness prime q belonging to X is_
different from p.

Proof. This is clear by 7. 3 since X is not a uniqueness sub-
group for A. /
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Lemma 7. 5. No non-cyclic subgroup of A centralizes a non-
cyclic subgroup of B.

Proof. Let D c A be of order p2 and suppose that
V c C_(D) is of type (p, p).

~ 3

If B is non-abelian of order q , V/Z(B) is a non-trivial sub-

group of B/Z(B) which is centralized by D. But the elements of D

induce automorphisms of B which preserve the symplectic form

[ , ] : B/2(B) x B/Z(B) -* Z(B) and so these automorphisms have deter-

minant 1. Thus if B is non-abelian of order q3, then |co(D)| > p2

implies that Cn(D) = B and so X is a uniqueness subgroup for C f̂D)

by 7. 2. If B is not non-abelian of order q , then X is a uniqueness
subgroup for C_(D) by 6. 2 also.B

We may now apply Lemma 5. 6. Note that by 7. 4, O T(X) = 1, and
# P

if x e D , C«(x) ^ C_,(D). Since X is a uniqueness subgroup for
Ijr = D

C-JD), CAx) c x. By 5. 6, X is a uniqueness subgroup for D, and also

A, and this is a contradiction. /
Lemma 7. 6. Let A = Q, (A) and B = Q (Z (F(X) )) as usual.

o l 1 2 q
Then

(i) CR(A ) = 1 and | A I = p3

r> 0 0

(ii) A contains a subgroup D of order p such that if
E = C_(D), then E = q and N^(E) c X

# ~~(iii) There exists d e D such that Cr(d) c X.

Proof. By 7. 5, if D is any subgroup of A or order p2,

CB(D) | < q.

If B is non-abelian of order q3, then A acts on B = B/Z(B)

and so A /CA (B) c GL(2, q). Thus |A / C A (B) | < p2. On the other
0 A o ° A o

hand, if | c A (B) | > p 2 , we would have a non-cyclic subgroup of A which
_°

centralizes B and therefore B, a contradiction to 7. 5. Therefore

| A | = p . If A centralizes Z(B), then A will induce a symplectic

group of automorphisms of B/Z(B) and so a subgroup V of A of type

(p, p) will centralize B/Z(B) and Z(B). It follows that V centralizes

B, a contradiction to 7. 5.
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Let D = CA (Z(B)). Since A /D c aut Z(B), A /D is cyclic andA o ° °
so |D| = p2. Since C (A ) c r (D) = Z(B) and [A , Z(B)] * 1, we
have C (A ) = 1. Therefore, in this case, E = Z(B) <\ X and so

B o —
N (E) = X. Finally since D/C_(B) is cyclic, there exists an elementG Bd e D such that B c C^(d). Then C (d) c x, a uniqueness subgroup

= CJ G =

for B. Thus the result is completely proved if B is non-abelian of

order q3.

For the remainder of the proof, we assume that B is not non-

abelian of order q . Thus X is a uniqueness subgroup for every sub-

group of B of order q .

Now the image of any irreducible representation of A on a vector

space of characteristic q * p is cyclic. Thus each minimal A-invariant

subgroup of Z(B) or B/Z(B) is cyclic. Otherwise A has a subgroup

of order > p2 which centralizes a subgroup of order q2 of B, contra-

dicting 6. 5. Remember that the fixed points of A on B/Z(B) are just

images of fixed points of A by 0. 3. Let N be an A-invariant subgroup

of B of order q2. If | z (B) |>q 2 we may choose N c Z(B) by

Maschke's Theorem, while if |z(B)| =q we may choose N/Z(B) a

minimal A-invariant subgroup of B/Z(B).

As before A /CA (N) c GL(2, q) and so |A / C A (N) | < p2.
0 o = ° A o

By 7. 5 I c^ (N) | < p and so |A | = p 3 . Let N be a minimal A-
Lx — 0 1

0invariant subgroup of N and define D = CA (N ). We claim that D
A 1

0

satisfies the conclusion of the Lemma.

First if A centralizes N , A induces a cyclic group of auto-

morphisms on N/N . Thus a subgroup of order p of A centralizes

N/N and N . This contradicts 7. 5. Therefore D + A and
i i o

C_.(A ) c c_(D) n c(A ) = N nr (A ) = 1. Since A /D c aut N ,
D 0 — D O I J D O 0 = = 1D = p . In this case E = N and N~(E) i> N, while X is a unique-

1 Lx =
ness subgroup for N by 7. 2. Thus N (E) c x . Finally s ince D

cen t ra l i zes N and induces a cyclic group of automorphisms of N/N

some element d e D cen t ra l i zes N/N and N . Then N ^ r (d), But
1 1 = G

X is a uniqueness subgroup for N by 7. 2. Thus Cr(d) c x.

This completes the proof. /
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Lemma 1.1. If R is any p-subgroup of X containing A, then

N_(R) c X.
G =

Proof. Let Q* be a maximal element of |/lr(A, q) containing B.

Then Q* c X, because X is a uniqueness subgroup for B. By the

Transitivity Theorem 4. 3, every element of l/L,(A, q) lies in X.

Note that C~(A) c Cn(D) e x by 7. 6(iii). Now if R is a p-G = G =
subgroup of X containing A, then (|/L(R, q)) c X and B c (|/U(R, q)).

G = = G
As N^(R) normalizes this subgroup (l/L(R, q)), we have N~(R) c x

G G G ==

since X is a uniqueness subgroup for B. This completes the proof. /

We are now in a position to contradict the existence of G. We

know by 7. 1 that H is a group of uniqueness type and so the results of

6. 4, 7. 5, 7. 6, 7. 7 apply to it.

If B is not non-abelian of order q3, and S = P n O , (H), then
p ^ p

Lemma 7. 8. Put X = H and let E, D, B be as defined in 7. 6.

> not nor

NW(S) c N ( E ) .
H = G

Proof. By 5. 6, if C~(d) c H for all d e D#, H would be a

uniqueness subgroup for D and A. Thus there exists an element deD

such that Cr(d) £ H. Let K be a maximal subgroup of G containing

C^(d). Then K = H while E = C^(D) c C^(d) c K.
G D = G =

If K is of uniqueness type, since A c K, we may apply 7. 7 and
get that P c K. But A is an abelian normal subgroup of P and since H
is p-stable, A c s . By 7. 7 again applied to K, N^(S) c K. Thus N^(S)nH
normalizes B n K => C^CD). If B n K ± C^CD), since H is a uniqueness

= J3 D

subgroup for all subgroups of B of type (p, p) by 7. 2, it follows that

H = K, a contradiction. Remember we have assumed B is not non-

abelian of order q3. Thus BnK=C n (D) is normalized by NO(S).

Hence we may assume that K is not of uniqueness type. We

derive a contradiction.

We show first that E centralizes F(K) t. For if r is a prime

different from q such that [E, F(K) ] =£ 1, we note that F(K) has no

elementary abelian subgroup of order r . Since A normalizes E, we

may consider the action of EA on F(K) . By a now hopefully familiar

argument, using a short trip via the Thompson subgroup, we see that a
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homomorphic image EA of EA is a subgroup of GL(2, r). But then

EA, a subgroup of odd order of GL(2, r) is abelian, since the derived

subgroup of any such subgroup if an r-group and E <\ EA. Hence

[E, A] c E n C (F(K) ). Thus either E c C (F(K) ) or [E, A] = 1.
— VJ r — vjr r

This last possibility does not occur by 7. 6 since CO(A ) = 1. Thus E
D 0

cen t ra l i zes F(K) t .

Now if F(K) f = F(K), we have a contradiction because then

E c CG(F(K)) c F(K).
Since BU(E) c H by 7. 6, E jfl K. Thus EF(K) n H =>

G = - q =

E(CG(E) n F(K) ) => E, since | E | = q, and EF(K) n H, being non-cyclic

and of odd order contains an e lementary abelian q-subgroup Q of order

q . Now we have just shown that [E, F(K) t] = 1, while

[F(K) , F(K) t] = 1 obviously. Thus [Q, F(K) t] = 1. Now
F(K) t c r (E) c H. If some element of order q in ( ^ (Q) did not lie

q = G = H

in Q we would have Q contained in a subgroup of type (q, q, q) of H

and by 7. 4, H would be a uniqueness subgroup for Q. This is not the

case s ince Q C K . We thus have F(K) . c H normal izes QB and
= q =

cen t ra l i zes the subgroup Q which contains all e lements of order q in

its cen t r a l i ze r . Apply 2. 2 and see that [F(K) T, B] = 1. Thus

N(F(K) T) 2 B. But H is a uniqueness subgroup for B. Hence

K = N(F(K) T) c H unless F(K) f = l and F(K) is a q-group. But then

F(K) has no subgroup of type (q, q, q). Let C be a Thompson sub-

group of F(K) . Then C^(C) is a q-group and K/C^fC) c GL(2, q)

q is. iv =

as usual , where C = C/$(C) . Thus K has a normal Sylow q-subgroup

F(K). But A c K acts faithfully on F(K). This is impossible since A

is a 3-generated group and F(K) has no subgroup of type (q, q, q).

This completes the proof. /

Lemma 7. 9. Without loss of general i ty there exists z e Z(P)

such that C~(z) c H.

Proof. Let B = 12 (Z (F(H) )) as usual. If B is non-abelian

of o rder q , then C * (B) =£ 1 s ince A has a subgroup of type (p, p, p).

Also C p (B) < P . If P is abelian, choose z eCjB). Then CG(z)=>B

and so Cp(z) c H, a uniqueness subgroup for B. If P is non-abelian
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choose z c P ? n Z(P). Since P/Cp(B) is a p-subgroup of GL(25 q)

where p is odd^ P/Cp(B) is abelian. Thus z e Cp(B) and so

Cp(z) -3 By whence Cp(z) c. H. Hence if B is non-abeiian of order q

we are done.

We may therefore apply 7. 8. We then have that P normalizes

E = C (D) where | E | = q. Thus Pf centralizes E. Now [A , E ] * l

by 7. 6 and so | c A (E) | = p 2 . Here A = 0 (A) as usual. By 7. 6,0 (
o i

If P is abelian then we may choose z - d in 7. 6 and the result

holds. If PT n Z(P) is non-cyclic, then, since by 7. 5 the centralizer of

any 2-generated subgroup of A in B has order at most q, we see that

C_(PT n Z(P)) = E. Then we may choose D C P ' n Z(P) without any loss
JD —

and then for some d e D we have C~(d) c H. We are just left with the
(jr =

case P n Z(P) is cyclic. But H was chosen in the beginning of §7 as a

maximal subgroup containing N(Z(P) n PT) D N~(P) if P is non~abelian.

Thus if z e Z(P) n Pf , C^(z) c H. This completes the proof. /
Li =

The proof of Theorem 5. 1 now proceeds very quickly.

Lemma 7.10. If A c H n Hg, then g e H.

Proof. Let R be a Sylow p-subgroup of H n Hg containing A.

Then R ± P, because if P c H n Hg, we have P, PS"1 c H. Thus

P = pg - 1 h for some h e H and so g"1h e NG(P) c H. Therefore g € H,

a contradiction. Consequently Np(R) £ H . But an application of 7. 7

shows that NP(R) c H. /
Ur =

Lemma 7 . 11 . If z e P is such that Cr,(z) c H, then z l ies in

a unique conjugate of H in G.

Proof. Among all g e G such that z e H n H , g e H choose g

such that | H H H g | is maximal . Let S be a Sylow p-subgroup of
g- P

H n H& containing z. We may clearly assume without any loss that
S c p . Also S * P since H contains KU(P). Let S c T c P be a

= G =
Sylow p»subgroup of N—CS). Since T => S, T must be a Sylow p-sub-

ri
group of KU(S). For otherwise we could find a p-subgroup T > T

G i_ l x
such that T <p H and then if x e T - H we would have T c H n H
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while T 3 S . Let U = T n O t (NQ(S)).
Now N (S) £ H since S * P. By 7. 10 it follows that A <j- S.

Thus SN.(S) D S. If n e NA(S), we have [S, n, n] = 1 and since
NQ(S) is p-stable, n e O (N(U) n NQ(S) mod CQ(U) n NG(S)). But
C J U ) n N ( S ) c o (N~(S)) because N^(S) is p-constrained. Thus

CJ CJ = p , p CJ CJ

N
A(S) ^ O t p(NG(S)) n P = U. It follows that U D S and so N Q ( U ) C H ,

by the maximality of S.
But Nr(S)=O.(Nr(S))(N(U)nNJS)). Since O.(Nr(S)) c

CJ p CJ CJ P CJ =C~(S) c C~(z) c H we have the desired contradiction, viz. NO(S) c H.G = G = G =

This completes the proof. /

Lemma 7.12. H/ET is a pf-group.

Proof. Suppose that a e P and that a^ e P for some g c G.
Then if z e Z(P) is chosen so that Cr(z) c H by Lemma 7. 9, we have

- l CJ -

z, zg eCG(a). There exists xeC f (a ) such that (z, z^ x> is a p-

group. Thus we can find y e G such that (z, zg X ) y c P. But then,

z, zy € P implies that y € H by Lemma 7. 11. Thus zg x £ H and

so g x e H. Then a& = a 5 and x g e H. Thus the largest p-

factor group of G is isomorphic to that of H by an application of the

transfer. Since G is simple we must have H/ET a p'-group. This

completes the proof of Lemma 7. 12. /
Lemma 7.13. p| |H/HT . Hence H is a uniqueness subgroup

for A.

Proof. For let S = P n O f (H). By Lemma 7. 8, NR(S) either
normalizes E or | B | = \Q (Z (F(H) )) | = q3. If INLJS) c N (E) then

1 2 q H — CJN_(S) has a non-trivial p-factor group because INU(E) does. RememberG G
that A does not centralize E by 7. 6(i). This is impossible because
H = O t(H) N--(S). On the other hand, if | B | = q3, letting B = B/Z(B)

P n
_

we have H/CTJIB) C GL(2, q). Again A does not centralize B and so
H/CH(B) is not a pT-group. But as a subgroup of GL(2, q) with p ^ q
we have p| | |

29

 
 

 



8. THE BTJRNSIDE pqqb-THEOREM, p, q ODD

This theorem appears in [10] and the proof is due to Goldschmidt.
However it owes a great deal to the work of Bender, since it relies on
ideas developed by him in the proof of the Uniqueness Theorem. Of
course, the theorems in §5, §6, §7 are obviously directly applicable
since they are concerned with the structure of a minimal simple group
of odd order.

a bTheorem 8. 1. If G is a group of order p q where p, q are

odd primes, then G is solvable.

Proof. Let G be a minimal counter example. Then G is

obviously a minimal simple group of odd order. Let P be a Sylow p-

subgroup, Q a Sylow q-subgroup of G.

(i) l/lr(R, rT) = {l} for any Sylow r-subgroup of G.

For if X e|/|_(ft, rT), there exists a Sylow r'-subgroup Rf => X.
CJT =

Then

XG = xRR' = Jl< i R,

and X is a proper normal subgroup of G.

Let H be a maximal subgroup of G.

(ii) If |TT(F(H))| =2 , then F(H) is non-cyclic.

For if r = max (p, q), then H = C (F(H) T) clearly and

CG(F(H)r) = CG(F(H)) c F(H), assuming F(H) is cyclic.

Thus a Sylow r-subgroup of H is either cyclic and contained in

F(H) or non-abelian and metacyclic. In either case H = Np(Z) where

Z = 12 (F(H) ). But Z char H and so a Sylow r-subgroup of H is a

Sylow subgroup of G. This contradicts (i).

(iii) F(H) is a r-group for all maximal subgroups H.

By 5. 4, H is the only maximal subgroup of G which contains

Z(F(H)). Let VCF(H) be a group of type (r, r). Then if x e V#,

C~(x) 3 Z(F(H)) and so C^(x) c H. By 5. 5, H is only maximal sub-

group of G which contains V. Then clearly H contains a Sylow r-
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subgroup of G, a contradiction to (i).

(iv) Every Sylow r-subgroup R of G lies in a unique maximal

subgroup M of G and every maximal subgroup of G contains a Sylow

r-subgroup of G for some r.
For M = N^(Z(J(R))) since F(M) is a r-group for some prime r.G
(v) Let P bea Sylow r-subgroup of G, M a uniqueness sub-

group containing R. Then M is a uniqueness subgroup for Z(R).
For suppose Z(R) C M =£ M, M maximal in G. Choose M

such that |M n M | is maximal. Let R be a Sylow r-subgroup of
M n M, R => Z(R). Conjugating R by a suitable element of M we
may suppose R c R. By (iv) R * R. Since |N~(R )| > |R |, the

1 = 1 (jr 1 1

choice of M ensures that N^(R ) c M. Hence R is a Sylow r-sub-
1 u l = l

group of M . But then M contains a Sylow r!-subgroup RT, by (iv).

Then if g e G , M^ = MX, x e R since G = R'R, RT c M^
Thus Z(R) c p | Mg<] G.

l(iv) There exist R , R Sylow r-subgroups of G such that
R n R = l.

1 2

For let M be the uniqueness subgroup for R , Z(R ). Choose

R £ M s u c n t h a t IR n Ml i s maximal. Let R n M = S. Without2 ±= 2 2

loss, S C R . Hence N^(S) => Z(R ) and so N^(S) C M if S * 1. But

S c R ^ S c R^ clearly shows that NQ(S) £ M.

Theorem 8. 1 now follows immediately. For we can choose
c a b

r = max (p , q ). Then there exists Sylow r-subgroups R , R such
that R PR = 1. Then | G | > |R | |R | = r 2 c > paqb = | G | , a1 2

contradiction!
l 2 '

9. MATSUYAMATS PROOF OF THE paqb-THEOREM, p = 2

Lemma 9.1. K G is a p-group and H c G, then either H <\ G

or Nn(H) 3 HX ^H, x e G.

Proof. The group H acts on the set S of all conjugates H + H

for some x e G by conjugation. If S = 0, then H < G. Since

{H} u s| = [G : NG(H)] * 1 if H ̂  G, p | | s | . Therefore there exists

HX * H such that Hx c N^(H). /
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Theorem 9. 2 [18]. If G is a group of order 2apb, then G is

solvable.

Proof. Let G be a minimal counter example. Clearly G is

a minimal simple group. By the proof of step (i) in 8. 1, no Sylow r-

subgroup of G normalizes any non-trivial rT-subgroup.

(i) If H is a maximal subgroup of G such that 7T(F(H)) = {2, p },

then F(H) contains a subgroup of type (r, r) for some prime r.

For otherwise F(H) is cyclic or quaternion while F(H) is

cyclic. If F(H)2 is cyclic, then H C C R ( F ( H ) 2 ) and so Z(H ) c

CtI(F(H)) c F(H). Thus Z(H) < H and Z(H ) char H . It follows that
H = P p p

H is a Sylow p-subgroup of G, a contradiction.

If F(H) is quaternion, then since H/CG(F(H) ) is abelian,

HT c r (F(H) ). Thus Z(H ) n Hf c r (F(H)) c F(H). Let Z be the
2 = C J p 2 2 = = ( j r =

unique subgroup of order 2 in F(H). Then Z char Z(H ) n HT char H .

Since H = N~(Z), we again have H is a 2-subgroup of G, a contra-

diction.

(ii) If H is a maximal subgroup of G such that TT(F(H))= {2, p },

then H is the only maximal subgroup of G containing Z(F(H)).

For let K D Z be maximal in G, Z = Z(F(H)). First

Z c o (NK(Z )) and so Z c O (K) by 3. 2. Thus [Z , F(K)J = 1.

Hence F(K) c N (Z ) = H. Similarly F(K) c H.

Now F(K) c o (NW(F(K) )) c F(H) by 3. 2 again. By symmetry,
2 = 2 H p = 2

F(H)2 c F(K)2 and H = K.

(iii) If H is a maximal subgroup of G, then F(H) is an r-sub-

group for some prime r.

Let V c F(H) be of type (r, r), using step (i).

Then if x e V#, CG(x) => Z(F(H)) and so CG(x) C H by (ii). Let

R ^ V be a Sylow r-subgroup of H. Let S be a R-invariant rr-subgroup

of G. Then S = <Co(x) : x e V#). Thus S c H. Since H = RS where
= XT pq g 1

S i s a Sylow r ' - s u b g r o u p of H con ta in ing S, S = S x = S ! C S i s

a n o r m a l r T - s u b g r o u p of H. T h u s S c F(H) t . Hence F(H) f i s the

un ique m a x i m a l R - i n v a r i a n t r T - s u b g r o u p of G. If R C R w h e r e R i s

a Sylow r - s u b g r o u p of G, then N-, (R) n o r m a l i z e s F(H) , and s o l i e s
Ki r
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in H. Hence R = R is a Sylow subgroup of G, a contradiction.

(iv) There exists a maximal subgroup M such that

M n Z(P) * 1, M n Z(Q) * 1 where P is a Sylow p-subgroup of G and

Q is a Sylow 2-subgroup of G.

For let Z be a conjugacy class of involutions of G containing

an element x of Z(Q). There exists y e Z such that (x, y) is not a

2-group by 1. 1. Thus xy has order divisible by p. Let Hc(xy) be

the unique subgroup of order p in (xy). Choose a maximal subgroup

M of G containing N~(H). Clearly M n Z(Q) ± 1, while just as

obviously Z(P) c N (H) c: M, where P is a Sylow p-subgroup containing
= (jr —

H.

We may now complete the proof of 9. 2. Let M be a maximal

subgroup of G satisfying the conditions of (iv). By (iii), F(M) is a

r-group. Let R D M be a Sylow r-subgroup of G and let S ^ M t be

a Sylow rT-subgroup of G. First Z(R) c C (F(M) ) c F(M). Choose

x c M n z(S) and let N = <Z(R)xl : i e Z). Clearly N c F(M) is an

r-group. Let 12 = {Z(R)y : y £ G} = 12 u 12 u . . . u f l , where 12
1 2 S 1

is an <x) orbit in 12.

Let N. = (12.). Since G = RS, there exists y e S such that

Z(R)y e 12. and so N. = <Z(R)yxl : i e Z) = (Z(R)XV : i e Z) = Ny.

Thus N. is an r-group normalized by (x). Choose I maximal

such that N = (12. , . . . , 12. ) is an r-group normalized by (x).

Assume for simplicity that N = (12 , . . . , 12,). Of course x e N^N).

Let T be a Sylow r-subgroup of G containing N. By 9. 1, either

N < T or there exists NZ * N such that NZ c NG(N), z e T .
If N < T then since G = ST, any G-conjugate of x c Z(S) is a

—
T-conjugate and so (x ) c Np(N) c G, a contradiction.

If N^(N) o NZ * N, z e T, then since £2Z u . . . U 12Z ^N, there
sz SJ_

exists s e S such that Z(R) C N and Z(R) <£ N. Suppose

Z(R)S e 12., i > 1. Then N. c Nr_(N) ^ x) and so Nr(N) 2 Z(R)S. Now

NN. is an r-group normalized b: x and generated by 12 , . . . , 12 12.,

a contradiction. This completes J e proof. /
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10. A GENERALIZATION OF THE FITTING SUBGROUP

Definition. Let X be any group, F(X), the Fitting subgroup of

X. We define F*(X) = socle (F(X). CV(F(X)) mod F(X)). Define E(X) to

be the terminal member of the derived series of F*(X).

It is easy to see that F(X)CV(F(X))/F(X) has no solvable normal

subgroup. For then we could choose a p-group P c c (F(X)) such that

PF(X)/F(X) is minimal normal in X/F(X) and then PF(X) is a nilpotent

normal subgroup of X. Thus F(X)CV(F(X))/F(X) has no solvable normal

subgroup and its socle is a direct product of non-abelian simple groups.

It is easy to see that F*(X) = F(X)E(X) and that CV(F*(X)) c F*(X).

Since this is actually the most important property of the group F*(X) -

being easily true when X is solvable - we verify this in the following

Lemma 10.1. (a) F*(X) = F(X)E(X).

(b) [F(X), E(X)] = 1.

(c) C(F*(X)) c F*(X).

Proof, (a) is clear.

(b) F(X)CX(F(X))/CX(F(X)), being a homomorphic image of a

nilpotent group is solvable. Thus E(X) = (F*(X))°° c (F(X)C (F(X)))°° c

CX(F(X)).

(c) Suppose CX(F*(X)) £ F*(X). Then CX(F*(X))F(X)/F(X) <J

CY(F(X))F(X)/F(X) and CY(F*(X)) n F*(X) = Z(F*(X)) c F(X). Thus
yv 2\. —

CY(F*(X))F(X)/F(X) n F*(X)/F(X) = 1. We see therefore that there exists

a minimal normal subgroup of F(X)CV(F(X))/F(X) which avoids
yv

F*(X)/F(X) and this is clearly impossible since
F*(X) = socle (F(X)CV(F(X)) mod F(X)). This completes the proof. /

y\.

Since by 7. l(b), [F(X), E(X)] = 1, we have F(X) n E(X) c Z(E(X)).

Also E(X)/F(X) n E(X) = F*(X)/F(X), a direct product of non-abelian

simple groups. Thus Z(E(X)) = F(X) n E(X). Now E(X)/Z(E(X)) is a

direct product of non-abelian simple groups S./Z(E(X)), 1 < i < n.
(oo) l — —

Define E. = S. ; . The groups E. are quasi-simple - that is E./Z(E.)

is a non-abelian simple group. They are called the components of X.

We will frequently write E. for E./Z(E.).
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Lemma 10. 2. (a) [E., E.] = 1 if i * j .

(b) E(X) = En . . . E .

Proof. (a) [E., E.]cz(E(X)) since E(X)/Z(E(X)) is a directi j —

product of groups E.Z(E(X))/Z(E(X)). Thus

[E., E., if

It follows by the Three Subgroups Lemma that [E., E., E.] = 1. Since

E. is perfect we have [E., E.] = 1.

(b) Clearly E(X) = E . . . E Z(E(X)).

Hence E(X) = E(X)T = (Ei . . . En)
T = Ei ... E^ This completes

the proof. /

The most remarkable property of the groups E. is contained in

the next Lemma. We see there that any E.-invariant solvable subgroups

of X(!) must be actually centralized by E..

Lemma 10. 3. (a) CV(E. mod Z(E(X))) = CV(E.) for any com-
y\. 1 yv 1

ponent E. of X.
l

(b) Any E.-invariant solvable subgroup S of X is centralized

by E
1

Proof. (a) Let x e CY(E. mod Z(E(X))). Then [E., x]c Z(E(X))
2\ 1 1 —

and so [E., x, E.] = 1.

The Three Subgroups Lemma gives [E., E., x] = 1 and the

perfectness of E. shows that [E., x] = 1. Thus C (E. modZ(E(X))) c

C (E.). The other containment is obvious.
yv 1

(b) Let S be a solvable E.-invariant subgroup of X. Then

[E., S] c E(X) n S. Now E(X) n S is a solvable E.-invariant subgroup

of E(X). Consider the image of E(X) n S in E(X)/Z(E(X)), a direct

product of non-abelian simple groups E x . . . xE . Consider the pro-

jection maps 77. : E(X)/Z(E(X)) -*E.. Then ir.(E(X) ns)Z(E(X))/Z(E(X)))

certainly commutes with E., if j ± i.

On the other hand TT.(E(X) n S)Z(E(X))/Z(E(X))) is a solvable

normal subgroup of E., & non-abelian simple group. Thus

(E(X) n S)Z(E(X))/Z(E(X)) centralizes E. and so E(X) n S commutes

with E. modulo Z(E(X)). By 7. 3(a), E(X) n S actually centralizes E..
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Thus [E., S, E.] = 1. The Three Subgroups Lemma with E! = E. shows

that [E., S] = 1. This completes the proof. /

Considerable interest will be attached to the subnormal subgroups

of F*(X). The following Lemma indicates part of their structure.

Lemma 10. 4. Suppose that S<< F*(X). Then

(a) F(S) = F(X) n S

(b) S = (F(X) n S)(E(X) n S) = F(S)E(S).

Proof. First F(X) n S c F(S). Let S = SQ <1 . . . < Sn = F*(X).

Then by induction F(S) c F(S.) for all i = 1, 2, . . . , n and so

F(S) c F(X) n S. This proves (a).

Hence S/F(S) = S/F(X) n S = SF(X)/F(X) is a subnormal subgroup

of F*(X)/F(X) and so is a direct product of non-abelian simple groups

or the identity group. Hence S/F(S) = (S/F(S)V } = SK ;F(S)/F(S) and

so S = Sl ;F(S). Then E(S) c Sl ; c F*(X)V ; n S = E(X) n S. Let

denote the natural homomorphism modulo F(S). Then we have

E(X) n S c C (F(S)) and E(X) n S is a normal subgroup of S, a direct

product of simple groups. Therefore E(X) n s c E(S) and we have

E(S) c Sl ' c E(X) n S c E(S)F(S). It follows that S = E(S)F(S) =

(E(X) n S)(F(X) n S). This completes the proof. /

Lemma 10. 5. Suppose S<< F*(X). Then

(a) N F + ( X ) (S)<< F*(X)

(b) If CF+(X)(S) c S, then E(S) = E(X).

Proof. Apply 10. 4 and get S = E(S)F(S) = (E(X) n S)(F(X) n S).

Clearly E(X) c NV(E(X) n S) n CV(F(X) n S). Thus E(X) c NV(S) and

(a) follows because F(X) is nilpotent.

To verify (b) we show that E(X) c S and the result follows from

10.4. Suppose that E is a component of E(X) not contained in S.

Then if El = EiF(X)/F(X) etc. , we have [E^ S] = 1. Hence

[Ex, S] c F(X) n E(X) = Z(E(X)). We may apply Lemma 10. 3(a) and get

[Ei , S] = 1. This contradicts C ^ ^ S ) c S. /
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Lemma 10. 6. Suppose that A<1<3 X and A = E(A). Then A<1 E(X).

Proof. Suppose that A = A < ... < A <3 A = X. If

n = 0 the result is clearly true since [A, F(X)j c F(X) n A c Z(A) and

so [A, F(X)] = 1 by a familiar argument.

Suppose A c E ( A ) <J X. Then [E(A ), F(X)] c F(X) n E(A ) c

Z(E(An)). Thus [E(An), F(X)] = 1 and E(An) c E(An+1). /

Lemma 10. 7. Suppose A, B c X anc[ F*(A) n B « F*(A).

Then F*(A) n B c F*(A n B). Further if B < A then F*(A) n B = F*(B).

Proof. Clearly F(A) n B c F(A n B). By 10. 4,

F*(A) n B = (F*(A) n B n F(A))(F*(A) n B n E(A))

= (F(A) n B)(E(A) n B).

Now E(A) n B < F*(A) n B < < F*(A). Thus (E(A) nB)F(A)/F(A)

is a product of components of F*(A)/F(A).

Let E be some component of F*(A) contained in (E(A) n B)F(A).

Then E1 c((E(A) n B)F(A)/°^ c E(A) n B and Ei normalizes F(A n B),

a solvable subgroup of A. Thus E centralizes F(A n B). It follows

that E c F*(A n B).

Now if B < A, then F*(A) n B c F*(B). Conversely

F(B) = F(A) n B c F*(A) n B. Since E(B) <<! A, by 10. 6, E(B)CE(A)flB.

Hence F*(A) n B = F*(B). /

Lemma 10. 8. Let U be any subgroup of X. Then

E(X) = (CG(U) n E(X))[E(X), U].

Proof. First [E(X), U] < E(X). Let El be a component of

E(X) not contained in [E(X), U]. We show that El c CG(U). Since

[Ex, U] c [E(X), U], we have [E^ U] c C ^ E ^ . Thus [E^ U, E j = l

and, by the Three Subgroups Lemma, [E , U] = 1. This completes the

proof. /

37

 
 

 



11. GROUPS WITH ABELIAN SYLOW 2-SUBGROUPS

J. H. Walter obtained a characterization of finite groups with
abelian Sylow 2-subgroups in [22], [23]. Bender offers a novel approach
in [5], In this section we commence this classification by Bender of
groups with abelian Sylow 2-subgroups. This depends on the character-
ization also due to Bender of groups which have a strongly embedded
subgroup. There are many equivalent formulations of this concept. The
following definition suffices for our purposes here.

Definition 11.1. A subgroup H of even order of a group G is

strongly embedded in G if H + G and H n H has odd order for all

x e G - H.

In [4], Bender characterized all finite groups which have a strongly

embedded subgroup. If G is a non-abelian simple group and has a

strongly embedded subgroup, then G = SL(2, 2n), Sz(22n+1), U (2n) for

suitable n. Here SL(2, 2n) denotes the group of all 2X2 matrices

of determinant 1 with coefficients from the field of 2 elements. The

groups Sz(2 n + ), U (2n) denote the Suzuki simple groups, see [20],

and the protective special unitary 3 dimensional group over a field of

2 n elements, respectively.

We are here interested in groups with abelian Sylow 2-subgroups.

Of the above three classes of groups, only the groups SL(2, 2n) = L (2n)

have abelian Sylow 2-subgroups. The known groups which have abelian

Sylow 2-subgroups in fact include just three more classes of groups. The

projective special linear 2-dimensional groups L (q), where q is an

odd prime power such that q = ±3(mod 8), all have Sylow 2-subgroups

which are elementary abelian of order 4. The simple group \ of

Janko [16] and the Ree simple groups G (q), where q = 3 ,

n > 1, [19] all have elementary abelian Sylow 2-subgroups of order 8.

It is still unresolved whether this completes the list of groups

with abelian Sylow 2-subgroups. The groups of Janko and Ree are clearly

the most intriguing groups on the above list. They have a single class

of involutions and if t is one such, C(t) is isomorphic to (t) x E where

E = L (q) and q is odd. Of course, it follows that q = ±3(mod 8) since
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otherwise a Sylow 2-subgroup would be non-abelian. We proceed to
define a JR (Janko-Ree) group.

Definition 11. 2. A simple group G with abelian Sylow 2-sub-
groups is called a JR-group if G contains an involution t such that
r (t) = <t> x E, where L (q) c E c PFL(2, q) and q is odd.

Lr 2 = =

It follows that [E : L (q)] is odd since otherwise a Sylow 2-sub-

group is non-abelian. It i s easy to see that a JR-group has a single

c lass of involutions and so the groups J , G (q), q = 3 , n > l , a r e
1 2 =

groups of type JR.

It was shown by Walter [22] that in a group of type JR, the group

E which occurs as the business end of the centralizer of an involution in

fact must be isomorphic to L (q). Now a simple group G with an in-

volution t such that C j = ( t > X E where E = L (q), q = ±3(mod 8)
2 ?n+l

first has q = 5 in which case G = J by [16], or has q = 3 ,
n ^ 1> b v [I"7]- I n a n early paper, H. N. Ward [24] showed that the

character table of G is determined and Janko and Thompson [17],

showed that the 3-Sylow normalizer of G has a uniquely determined

structure. Further results have been obtained by Thompson [21], but

the final determination of the multiplication table of G still eludes us.

Thus either a simple group of type JR is J or G (q) or a new simple

group with the same character table (and so order) as Gx(q) and with

very similar structure.

Definition 11. 3. A group G with an abelian Sylow 2-subgroup is
said to be an A*-group, if G has a normal series K N C M ^ G where
N and G/TVt are of odd order and M/N is a direct product of a 2-group
and simple groups of type L (q) or JR.

Remark. Our definition of a JR-group differs only slightly from

that of Bender [5]. His definition requires (and his proof uses crucially)

the fact that the centralizer of an involution of a simple group G of type

JR is a maximal subgroup of G. This follows from the Definition 11. 2,

as will be proved in 12. 2 below.
We state the main theorem of Bender [5] here.
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Theorem A. Let G be a finite group with an abelian Sylow

2-subgroup. Then G is an A*-group.

Remark. If a group G has an abelian Sylow 2-subgroup T of
rank 1, then G is solvable and 2-nilpotent and clearly an A*-group. If
T has rank 2, then G is 2-nilpotent unless T is of type ( 2 , 2 ) . But
then if a > 1, G is solvable by [7] and clearly an A*-group since it has
2-length 1. Thus we may assume that |T | = 4 and then we can apply
the results of [13]. Again G is an A*-group.

Hence the main thrust of Theorem A is directed at the case of a

finite group G with an abelian Sylow 2-subgroup of rank at least 3.

We will follow here closely the direction of Bender's proof,

expanding the abbreviation portions where necessary. Minor changes in

the presentation will be made, but the proof itself is so delicately woven

and intricate that its beauty would suffer if the changes were too great.

For generalizations of the techniques of the following sections, the

reader should consult GoldschmidtTs 'strongly closed abelian' paper [11].

12. PRELIMINARY LEMMAS

Lemma 12 .1 (Thompson). Let G be a group with an abelian

Sylow 2-subgroup S. Let R be a subgroup of S such that

r(R) = r(S) - 1. If G = O2(G), then any involution t e S is conjugate

in N^(S) to an e lement of R.
(jr i

Proof. Of course, Nr(S) controls fusion of elements of S by
Burnside's lemma.

Consider the transfer V : G -* S.

Let x , . . . , x,, x. , , t , . . . , x , x t be a system of coset
1 K K~rl n n

representatives of S in G chosen so that x.tx. e S for i = 1, . . . , k,

x.txT1 £ S for i > k. Since [G : S] is odd, k is odd.
k - iClearly V(t) = n x.tx. .

i=l l l

If x.txT1, x. + ..tx7_i ^R, then x.tx71x.,1tx7?;i €R, since

r(R) = r(S) - 1. Thus V(t) = x^x"1 (mod R). Since O2(G) = 1, V(t) = 1
and s o x tx c R. /
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Lemma 12. 2. Let G be a simple group with an abelian Sylow

2-subgroup S. Suppose t e S is an involution such that C^(t) = ( t ) x E(̂
where L (q) c E c prL(2 , q). Then Cr(t) is a maximal subgroup of G.

Proof. Suppose Co(t) c M c G.
2 =

If O (M) = M, then by 12. 1, t is conjugate in M to an element
of E. Since C^(S) c cn(t) c M, and N1vyr(S)/Clvyr(S) acts transitively
on the non-trivial elements of M, we have N (S) = N (S) c M. Also
for all involutions s e M, s = tm, m € M and so C^(s) = C^(tm) c M.
Suppose M n M contains an involution s, where x eG-M. Then s,

•tr X V

s € M and so there exists y eM such that s y = s. But then
x~ y e C~(s) C M , x e M, a contradiction. Hence M is strongly em-ir =
bedded in G.

But by [4], G = L (2n) since the Sylow 2-subgroups of G are

abelian. But the centralizer of any involution in L (2n) is an abelian

2-group. This contradicts our assumption that C(t) = ( t ) x E where

E^L 2 (q) .

If O2(M) c M then let K = O2(M). Clearly [M : K] = 2. Since

a Sylow 2-subgroup of K ^ E is of order 4, K ^ K => K 2 1, K/K ,
— — ]_ __ 2 — 1

K have odd order and K / K = L (r) for some prime power r. Of
2 1 2 2 k

course Ef c K . Hence either q = 5 or r = q for some k. Let s
be an involution in K . Then C^ (s)/C^ (s) is a dihedral group ofi \ K2

order r - e where r = e(mod 4), e = ±1. Since s is conjugate to t
and C^(t) = (t) x E, we see that any dihedral section of C^(s) has

Lr Vjr

order at most q + 1. Thus r - e < q + 1. I f q = 5 then r = 5, while

if q r then r = q.
If K * 1, then for some involution s e K we have C ^ (s) * 1

2 i K2

since there exists a four-subgroup of K normalizing K . But then
C_(s) contains a section which has a normal odd order subgroup Crjr (s)G K2

with a dihedral factor group of order q - e. This situation does not

arise in C (s) = <t> x E. Note that any field automorphism of PSL(2, q)

acts non-trivially on a dihedral subgroup of order q - e.

Thus K = 1 and K c aut L (q). Since clearly t € CL^K ) < M
2 = 2 M 1 =
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we must have t e Z(M), M = Co(t). This completes the proof. /

The following lemma is not required for some time in the proof

of Theorem A. It is of some independent interest, affording as it does the

first glimpse of the importance of the F*-subgroup.

Lemma 12. 3. Let G be a group with abelian Sylow 2-subgroups,

p a prime, P some p-subgroup of G. Assume that r(O (G)) < 2 and

that [P, OP(F*(G))] = 1. Then P c O (G).— p

Proof. Let C = C^(OP(F*(G))) D P . If C c G then since C<1 G,

by 10. 6, F*(C) = F*(G) n C. Because [P, OP(F*(G))] = 1,

[P, OP(F*(C))] = 1. For F*(G) n C = (F(G) n C) (E(G) n C) and so

OP(F*(G) n C) = OP(F(G) n C) OP(E(G) n C). By induction p c o (C)co (G).

Thus C = G, E(G) = 1, F*(G) = F(G).

Now let Z = ft (Z(F(G) )) for some q * p, and let G = G/Z.

First F(G) = FjjS) because Z c Z(G). Also r(O (G)) < 2 because

O (G) = O (G) and Z is a pT-group.

Let E(G) = E. Since [E(OO), F(G), E°°] = l we have [E(OO), F(G)] = 1

and because F*(G) = F(G), E ^ = 1. Thus E = 1. Hence

F*(G) = F(G) = F*(G) = F(G) . It follows that [P, OP(F*(G))] = 1 and

by induction K O (G). Since Z c Z(G), P c O (G).
= p = = p

Thus Z = l and F(G) is a p-group containing CG(F(G)). Let

Q be a Thompson critical subgroup of F(G). If p = 2, then

P c C(F(G)) c F(G) since the Sylow 2-subgroups of G are abelian. If

p * 2, we may choose R = ft (Q) and then C^(R) is a p-group by 2. 4.
I ^ l — ^ — I 9

Since r(R) < 2, R < r and if R = R/$(R), R < p . Still C^(R)

is a p-group and G/C^O^) ^ GL(2, p), with abelian Sylow 2-subgroups.

Every such subgroup has a normal Sylow p-subgroup. Thus

PCG(R)/CG(R)cOp(G/CG(R). Hence P c Op(G). /

The following Theorem is, it seems to me, unique in finite group

theory. A theorem about the structure of a general finite simple group

with only a very minor restriction on its subgroups! It is followed by an

extension very reminiscent of the uniqueness theorems of Chapter 5. It
is true to say that these next two Theorems are the very cornerstone of
the whole proof.
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Theorem B (Bender). Let A and B be a distinct maximal sub-

group of a simple group G such that F*(A) c B and F*(B) c A. Then

F*(A) and F*(B) are p-groups for the same prime p.

Proof. Since F(B) is an E(A)-invariant solvable subgroup of A,

F(B) c CA(E(A)) by 10. 3.

By 10. 8, E(A) = CE(A)(E(B))[E(A), E(B)].

Now CE(A)(F*(B)) = CE(A)(E(B)) c F*(B).

Thus E(A) c F*(B) and so E(A) c F*(B)^°°) = E(B).

By symmetry E(B) c E(A). Since A ± B, E(A) = E(B) = 1.

Clearly subgroups of coprime orders of F(A) and F(B) centralize

each other. It follows that TT(F(A)) = TT(F(B)). For otherwise if

p e TT(F(A)) - TT(F(B)), then [F(B), O (A)] = 1. Since F(B) 3 CG(F(B)),

we have a contradiction.

Let p e TT(F(A)) = TT(F(B)). Let P = Op(A), Q = Op(B), R = Opt(A).

First [E(R), F(R)] = 1 and [O (A), E(R)] = 1. Thus E(R)

centralizes F(R)P = F(A) = F*(A) D C G (F*(A) ) . Hence E(R) = 1 and

F*(R) = F(R). Now [Q, F*(R)] = [Q, F(R)] = [Q, F(A) n R] c Q n R = 1.

Since Q centralizes F(R) D C R ( F ( R ) ) , by 2. 2, [Q, R] = 1. Similarly

[P, OpT(B)] = l.

Now R c cG(Q) < B. Also F(B) = QOP(F(B)) and

P c CB(OP(F(B))) < B. Thus [P, CB(Q)]c CB(OP(F(B)) n CB(Q) =

CD(F(B)) c F(B). Because PF(B) = PQ x oP(F(B)), since subgroups of

coprime orders of F(A) and F(B) commute, we have PQ is normalized

by CR(Q). But now

[PQ, CB(Q)] c [P, CB(Q)] c F(B) n PQ = Q.

Thus [PQ, CB(Q), CB(Q)] = 1. By 0. 2 we have [PQ, OP(CB(Q))]=1.

Hence O , ( A ) c o (O p (CJQ)) )co t(B).
P — P D = P

By s y m m e t r y , O t(B) c O .(A).

Hence O (A) = O t(B) = 1 and TT(F(A)) = TT(F(B)) = {p }.

This completes the proof of Theorem B. /

Theorem 12. 4. Let A be a maximal subgroup of a simple group

G, S a subnormal subgroup of F*(A) such that CT^/AXCS) £ S. Let
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B c G be a subgroup of G containing S. Then

(a) O (B) n A = 1 for q €

(b) [O (B), OP(F*(A))] = 1, if p € *(F(A)).

Moreover, if B is a maximal subgroup of G and if either

|ff(F*(A))| > 2 OT |ir(F*(B))| > 2, then each of the following ensures

that A = B.

(c) A contains a subnormal subgroup S of F*(B) such that

CF*(B)(§) c S. " "

(d) B is an A*=group, | E ( B ) | < | E(A) | and^ O (B) = 1 for all

q € TT(F(A))\

(e) A and B are conjugate A*-groups.

Remark. The structure of A*-groups is only minimally required

in (d) and (e). In fact the relevant fact required of the subgroups A and

B is that they have the following structure: X ^ Y ^ Z ^ l where X/Y, Z

are solvable and Y/Z is a direct product of non-abelian simple groups.

Thus, roughly speaking, this Theorem holds provided the relevant sub-

groups do not involve groups of type A wr A .

Proof. By 10. 5(b), S 3 E(A). Also by 10. 4, S= (F(A) nS)E(A),

and since CF + ( A )(S) c S, Z(F(A)) c S. Thus if p e TT(F(A)), pcir(F(S)).

(i) [O (B) n A, OP(S)] = 1 for all primes p.

For O (B) n A is an E(A)-invariant solvable subgroup of A. Thus

[Op(B) nA, E(A) ]=1

and

[O (B) n A, OP(S)] - [Op(B) n A, F (S ) t] c op(B) n A n F(A)pt = 1.

(ii) CG(O (S)) n O (A) c Oq(S) for q e TT(F(A)), q * p.

For CG(O (S)) n o (A) centralizes F ( S ) , C F ( A ) t and E(A).

Thus CG(O (S)) n o (A) c c(S) n F*(A) c s. It follows that

CG(Oq(S)) n o (A) c o (S) = O (A) n S.

(iii) [Op(B) n A, O (A)] = 1 for q e TT(F(A)) - p.
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This follows from (i) and (ii) using 2. 2.

Thus if p £TT(F(A)), O (B) n A centralizes F*(A) since by (iii)

O (B) n A c r (F(A)) and by (ii) O (B) n A c r (E(A)). Since
p = (jr p = Lx

C~(F*(A)) c F*(A), it follows that O (B) n A = 1. This completes the
G = p

proof of (a).

Suppose now p e 7r(F(A)).

(iv) CG(Op(S)) n Op(B) c Op(B) n A.

For Cr(On(S)) c Cr(Z(F(A)J) since Cr(S) n F*(A) c S. Thus
KJ p = VJT p Cjr =

CG(Op(S)) c A.
(v) OP(S) centralizes O (B) and so [E(A), O (B)] = 1.

For [OP(S), Op(S)] = 1. By (iv) and (i), [O^S), C(Op(S))nOp(B)]=l.

We may now apply 2. 2 to the group O (B)O (S) to get the result.

(vi) C(F(S)pf) n F(A)pT c F(S) t.

For if x e CG(F(S)pT) n F(A)pf then [x, O (S)] c [x, Op(A)] = 1.

Clearly [x, E(A)] = 1 and so [x, S] = 1. Since CG(S) n F*(A) c s, we

have (vi).

(vii) We may now apply 2. 2 to F(A) T using (v) and (vi). It follows

that [O (B), F(A) T] = 1. Hence [O (B), OP(F*(A))] = 1. We are done

with (b).

Continuing, let B be a maximal subgroup of G containing S. We

show that under condition (c), F*(A) is a p-group if and only if F*(B)

is a p-group. For if (c) holds, we are assured of a symmetrical relation-

ship between A and B. Thus we have [OP(F*(B)), O (A)] = 1 for all

p e ?r(F(B)) and O (A) n B = 1 for all p £ TT(F(B)).

Now if F*(A) is a p-group, then since S c O (A) n B it follows

that p e 7r(F(B)). Thus OP(F*(B)) c r (O (A)). Since
= G p

C (O (A)) c o (A) = F*(A), we see that F*(B) is a p-group also. Thus

7i(F*(A)) I > 2 if and only if | TT(F*(B)) | > 2.
Now OP(F*(B)) c c^(O (A)) c A for all p e TT(F(B)). Also

= G p =
[O (B), Op(F*(A))] = 1 and so O (B) c A because OP(F*(A)) * 1. Thus

F*(B) c A. Symmetry gives F*(B) c A and we may apply Theorem B

to get A c B. This verifies (c).
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If B is an A*-group, by hypothesis O (B) = 1 for all primes

q e 77(F(A)). By (b), it follows that F(B) c A. By 10. 6(a), since

C (S) n F*(A) c S <3<] F*(A), E(A) c S c B. Part (b) also shows that

[F(B), E(A)] = 1. Since B is an A*-group, it follows that E ( A ) C E ( B ) .

But |E(A) | > |E(B)|. Thus E(A) = E(B) = 1. Otherwise A = B. We

may now apply (c) with S = F*(B) = F(B) c A and get A = B.

(e) follows immediately from (d). /

The following two lemmas are easily proved and interesting in

themselves. They are also of interest because they seem not to have

been noticed in even the solvable case.

Lemma 12. 5. If G is a group such that F*(G) is a p-group.

If U is a p-subgroup of G, then F*(CG(U)) and F*(NG(U)) are p-

groups also.

Proof. Let N = N^(U), C = C~(U). Clearly F(N) t c F(C) t c
G G p = P =

F(N) t and E(N) c C because U c F(N). By 10. 6 E(N) = E(C). It

follows that OP(F*(N)) = OP(F*(C)).

Let x£OP(F*(N)) be a pT-element. Then

[CG(U)nF*(G), x] COP(F*(N)) n F*(G) c Z(F*(N)).

Hence [CG(U)nF*(G), x, x] = 1. By 0.2, [CG(U)nF*(G), x] = 1. Now

apply 2. 2 to <x> acting on F*(G)U. It follows that [x, F*(G)] = 1 and

so x e F*(G). Hence x = 1. Thus OP(F*(N)) = OP(F*(C)) = 1. /

Lemma 12. 6. Let U, V be p-subgroups of a group G such

that V c u . Then if F*(CG(V)) is a p-group, F*(CG(U)) is a p-group

also.

Proof. If V< U, let N = N (V). Clearly if N c G, induction

on G gives the result since C~(U) c: C~(V) c: N. Hence we may
G = G =

assume N = G.
Now since F*(Cr(V)) is a p-group, F*(Np(V)) is a p-group also.

Apply 12. 5 to N (V) = G to get the result.
G

Since V <1<1 U, the Lemma follows by induction on the length of

a subnormal series from V to U. /

46

 
 

 



13. PROPERTIES OF A*-GROUPS

Let X be an A*-group, t an involution in X.

Lemma 13. 1. If a 2-subgroup T of X cjmtrjajjjzej^ O(X), then

it is contained in F*(X).

Proof. Since [T, O(X)] = 1, [T, O(F(X))] = [T, F(O(X))] = 1.

But because the Sylow 2-subgroups of X are abelian, [T, F(X)] = 1.

But clearly normal subgroups and factor groups of A*-groups are A*-

groups.

Hence F(X)CV(F(X))/F(X) is an A*-group which has no non-

trivial solvable normal subgroups. Thus [F(X)C^(F(X)) : F*(X)] is odd.

Hence T c F*(X). /

Lemma 13. 2. If X is a simple A*-group, then X has one

class of involutions.

Proof. This is well known if X = L (q). If X is of type JR,

it follows from 12. 1. /

The next two lemmas are concerned with Cv(t)-invariant subgroups

of X. We are able to locate at least part of them within F*(X).

Lemma 13. 3. Let E be a Cv(t)-invariant semi-simple subgroup

of E(X). Then any component K of E is contained in a component L

of E(X). Moreover (i) or (ii) holds.

(i) K = L.

(ii) K te_ofj;ype_ L (q), q odd, L is of type JR and t

centralizes K.

Proof. Let T be a Sylow 2-subgroup of X containing t. Since

K does not centralize a Sylow 2-subgroup T n E(X) of E(X), there exists

a component L of E(X) such that [K, T n L] * 1. Now T permutes

the components of E(X) and centralizes a Sylow 2-subgroup of each com-

ponent. Hence T normalizes both K and L. Thus [K, T n L] < K

and if [K, T n L] c Z(K), [K, T n L, K] = 1, whence [K, T n L] = 1.

This is not the case.
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It follows that [K, T n L] = K c L.

If K + L, then C_ (t) normalizes L n E 3 K.
I_i —

If L = L (2 ), then t must induce an inner automorphism on L

since a Sylow 2-subgroup of PTL(2, 2n) is non-abelian if n is even. If

L = L (p ), p * 2, then n is odd because otherwise a Sylow 2-subgroup

of L is dihedral of order > 8. If then t were to induce the transpose

inverse1 automorphism on L, a Sylow 2-subgroup of L(t) would be

non-abelian. Thus t must induce an inner automorphism T on L if

Since C (T) is dihedral if L = L (q), q odd, and an elementary
n 2

abelian 2-group if L = L (2 ), CT (r) normalizes no non-solvable sub-
2 JL

group of L except L itself. Here r is an involution in L. Hence

K = L.

If L is of type JR, then t centralizes a Sylow 2-subgroup

T n L of L and so t normalizes CL (r) for r e T n L. Now
C_ (r) = (T) x E and so t normalizes Ê  ' — L , a group of type

Li i

L (q), q odd. As we saw above, t must induce an inner automorphism
on L and so there exists an involution u e L such that [tu, L ] = 1.
If t e L c L, then CT (t) is a maximal subgroup of L and CT (t) D K.

1 = JL L =
This is the result. Thus L (t) = L x (tu) and
[tu, E] c C (L ) n C (r) = <r>. It follows that [tu, E] = 1 because
[E : L ] is odd.

Now tu centralizes a Sylow 2-subgroup S of L and so tu nor-
malizes N (S), which is modulo CT (S) a non-cyclic group of order 21.

Let Z/CT(S) have order 7. Let M = NT (S)(tu). Since
Li Li

tu e C (S) <3 M, [tu, Z] c C (S) n Z c C (S). Thus tu centralizes

Z modulo CT (S). It follows that either tu centralizes Z or tu acts on

Z like the unique involution r c S which is centralized by an element of

order 3 in NL(S) n CL(T). Thus either [tu, Z] = 1 or [tur, Z] = 1 and

so either tu or tuT centralizes N (S) £ CT (T), a maximal subgroup of
L — L

L by 12. 2. Since ur is an involution, we lose no generality by assuming
that [tu, L] = 1 and so CT (t) = CT (u) = <u) x E for some suitable

L L 1
subgroup E . By 12. 2, C (u) is a maximal subgroup of L. But
C_ (t) = CT (u) normalizes L n E D K. Thus K c CT (u) = CT (t) and so

JL Li — — Li L

K is of type L (q). /
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Lemma 13. 4. Let U be a Cy(t)-invariant subgroup of X such

that U = F*(U). Then [t, U] = V 0<l F*(X).

Proof. We have already seen that subnormal subgroups V of

F*(X) satisfy V = F*(V) = F(V)E(V). If we could show that

[t, E(V)] « F*(X), [t, F(V)] < < F*(X), then it would follow that

[t, V] = [t, F(V)][t, E ( V ) ] « 1 F*(X). For [t, E(V)]<1F*(X) if

[t, E(V)]<<1 F*(X).

Thus we assume first that E(U) = U = [t, U]. We show first that

[U, F(X)] = 1. Let D = CX(U) n F(X). Then [C p ( x ) ( t ) , U] c U n F(X),

a nilpotent normal subgroup of U and so [U, CY(t) n F(X)] c Z(U). As

usual, [U, C__(t) n F(X)] = 1 and so CY(t) n F(X) c D. Thus t inverts

(N (D)nF(X))/D. Note that a Sylow 2-subgroup of F(X) lies in

Cx(t) n F(X) c D.

Now U = [t, U] centralizes N (D) n F(X)/D. Arguing for each

Sylow p-subgroup of the nilpotent group N (D) n F(X) separately, it

follows that U centralizes NX(D) n F(X). Thus D = F(X) and

[U, F(X)] = 1.

Now any Sylow 2-subgroup of U centralizes F(O(X)) c F(X).

Since Cofxx(F(O(X))) c F(O(X)), by 2. 2 it follows that any Sylow 2-sub-

group of U centralizes O(X). By 12. 1 it follows that any Sylow 2-sub-

group of U lies in F*(X) and so U c F*(X). Thus U c E(X). By

13. 3(a), U = [t, U] « E(X). Note that 13. 3(b) is not applicable here

since if a component K of U is not a component of E(X), then [K, t] = l.

But U = [t, U] is just the product of components not centralized by t.

Now assume that U = [t, U] is a p-group where p is an odd

prime and that X is a minimal counter example.

First if O (X) * 1, let X = X/0 (X). By induction [I, U]<]<3 F*(X).

But any subnormal p-subgroup of F*(G) is contained in O (G) for any

group G. Thus [t7~U] g O (X) = 1 and so [t, U ] C Q (X). Thus

Op(X) = l.

Again U centralizes F(X) for otherwise, Cx(t) n F(X) c

CX(U) n F(X) = D and U centralizes N (D) n F(X)/D. Thus

[U, F(O(X))] = 1 and so [U, 0(X)] = 1 since ( | u | , | F ( 0 ( X ) ) | ) = 1. For

[F(O(X)), U, 0(X)] = 1, [0(X), F(0(X)), U] = 1 and by the Three Sub-
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groups Lemma, we have [U, O(X), F(O(X))] = 1.

Hence [U, 0(X)] c CX(F(O(X)) c F(O(X)).

Now if w e O(X), u e U, w11 = wf, f e F(O(X)), and so

w = w = wf , a contradiction.

If O(X) * 1, let X = X/O(X). Then by induction [T, U ] « F*(X)
and so [f, U] c F(X). Then [t, U]O(X) c O (X mod O(X)) = O(X) because
p ^ 2 . Thus [t, U] = UCO(X). Since U c Z(O(X)) we have a contra-
diction to O (X) = 1.

P

Now X is an A*-group such that O(X) = 1. It follows that

t e F*(X). Hence U = [t, U] c F*(X).

If F*(X) c X, then U « F*(F*(X)) = F*(X), by induction. Hence

X = F*(X). If X is not simple, let N <| X be a minimal normal sub-

group of X. Since X = F*(X), N is a simple group. By induction

UNO<1 X. But the only subnormal subgroups of X are simple groups

or 2-groups (or products of them) and since U is a p-group, U c N. If

X is not simple there exists N <J X such that N n N = 1 and then

U c N n N = 1. Thus X is a simple A*-group.

Thus either X = I (2n) or Cv(t) is a maximal subgroup of X.

In the first case, the only odd order group normalized by Cv(t) is 1,

while in the second case U c Cx(t). Since U = [U, t], U = 1. This

completes the proof. /

Lemma 13. 5. Let T be a Sylow 2-subgroup of CY(t) and

U = OF(CY(t)). Then U c O*(X) = F*(X mod O(X)) and CTT(T) c O(X).

Further for any component E o£ E(X), the following hold.

(a) U normalizes E;

(b) U/CU(E) is cyclic;

(c) If E is of type L2(2n) or JR, then U centralizes E.

Proof. Induction on X

(i) OCX) = 1.

Suppose O(X) * 1. Let X = X/O(X), C = Cx(t). Then C^(t) = C,

< F(X) and so U = OF(C) c OF(C) = W.

By induction U c W c O*(X) = O*Tx) and so U c O*(X). Also by
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induction, C^(T) = 1 and so C ĵ(T) = C^fT) = 1. Hence C^T) c O(X).

Moreover, if E is a component of E(X), E is a component of

E(X). For E normalizes the solvable subgroup F(X mod O(X)) and so

E centralizes F(X). Since E « X, it easily follows that E c F*(X),

and so E is a component of E(X). Thus W normalizes E by induction

and so W normalizes EO(X). Of course [E, O(X)] = 1 because O(X)
(oo)

is solvable and E-invariant and so E c w normalizes (EO(X)) = E.

Now put D = C™(E). By induction W/D is cyclic and

U/Cn(E) = UCW(E)/CW(E) c W/CW(E). But [D, E] = 1 and so

[D, E]co(X). Hence [E, D, E] = 1 and [E, D] = 1. Thus D = C (E).

Therefore U/C (E) is cyclic.
Again (c) holds since by induction [W, "E] = 1 and then

[W, E] = 1 as usual. Thus [U, E] = 1.

(ii) F*(X) = O*(X) => T where T is a Sylow 2-subgroup of X.

This is clear because X is an A*-group and O(X) = 1.

(iii) U normalizes E and so (a) holds.

For T normalizes each component of E(X) and centralizes a

Sylow 2-subgroup T n E(X) of E(X). Also CU(T) permutes the com-

ponents of E(X) and centralizes T n E(X). Thus CTT(T) normalizes E.
But U = C (T)[T, U] and by (ii) T c F*(X). Thusu —

[T, U ] C F * ( X ) > E. It follows that U normalizes E.

(iv) X=F*(X)U.

Let Y=F*(X)U and suppose Y c X. Then TC C y ( t )cc (t)

and so U = OF(Cx(t)) c Y. Thus U c OF(Cy(t)). By induction

U c O*(Y) and C^T) c O(Y).

Now [O(Y), F*(X)] = [O(X), F(X)] since [E(X), O(Y)] = 1 as

usual. Also [O(Y), F(X)] c O(Y) n F(X) = 1 because F(X) is a 2-

group. Thus O(Y) c CX(F*(X)) c F*(X) and O(Y) < F*(X). This is

absurd. Hence O(Y) = 1, U c F*(Y) = F*(X), CU(T) = 1. Parts (b),

(c) clearly hold in Y and so in X. Thus Y = X.

(v) X = EU, where E is a non-abelian simple group.

First if F*(X) = F(X) is a 2-group, then X = F(X)U = F(X) x U
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since [U, F(X)] c F(X) n U = 1. This contradicts O(X) = 1.

Let F*(X) = EE where E is a component of E(X), and let

Y = EUT. Note U normalizes E by (a). First O(Y) n E = 1 and so

[t, o(Y)] = 1 because [t, U] = 1. Since Y/ET is nilpotent, O(Y) is

nilpotent. Finally Cy(t) = UTCE(t) c c x ( t ) . Thus U c OF(Cy(t)).

Since [E, O(Y)] = 1, EO(Y) = E x O(Y).

By induction if Y c X, U c O*(Y), C^T) = 1 and (b), (c) hold.

O*(Y) = ETO(Y) clearly and so U c EC^E) .

Arguing similarly on Y = E UT we have U C E C T J ( E )• T h u s

U c E C (E ) n ECTT(E) = EE C (EE ). Hence U c F*(X) and the

theorem is true.

We may assume that X = EUT. Let r be the projection of t on

E. If r = 1, then [t, E] = 1 and so t e Z(X). But O(X) = 1 and

U c O(Cx(t)). Thus r ^ l , Since [U, T] = 1, Cx(t) = C X ( T ) . If

Y = EU c X, we may induct to Y, r in place of X, t and get

U c O*(Y) = E c F*(X) and (^ (T n E) = 1. Since Cu(TnE) = Cu(T),

we have (v).

(vi) E is of type L (q), q odd.

If E is of type L2(2n), then CE(t) = T and [U, C £ ( t ) ] c u nE

and so [U, CE(t)] c O(CE(t)) = 1.

Let U = U/Cn(E) c PFL(2, 2n) and [U, T] = 1. At least one of

the elements of T is moved by any field automorphism and so U must

induce inner automorphisms on E. Since CF(T) = T, U = 1 and

U = C (E). This contradicts O(X) = 1 since EU = X = E x u.

If E is of type JR, then C^W = (t) x H where

L2(q) c H c prL(2 , q). Therefore O(CE(t)) = 1. Since

[U, CE(t)] < CE(t) n U we must have [U, CE(t)] = [U, T] = 1. Let

s e T 1 , s ^ t . Note U c r (s) and so Cv(s) = Cir(s)U = «s) x L)U

where L is a conjugate of H. Clearly C«.(s) is an A*-group and

Cx(s) c X.

Since [T, U] = 1, U = C^T) . Now U c OF(Cx(t) n C (s)) and

by induction U = C^T) c O(Cx(s)). Then [U, CE(s)] c O(CE(s)) = 1.

Thus U centralizes (C^W, C^Cs)) = E by 12. 2. Again this contradicts

O(X) = 1. This completes the proof of (vi).
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(vii) The final contradiction.

By the above results X = EU? E = L (q), q odd. Therefore

C (t) is dihedral of order q - e, where q = (mod 4), e = ±1, T is of

type (2, 2).

If U c E we are done because E = O*(X), CTT(T) = U n C«(T) =
— U £J

T P U = 1 and U = O(C (t)) is cyclic.

As U = CU(T)[U, T] and [U, T] c E, it follows that ClJ(T) * 1.

Let u e C (T) have prime order p. Let q = r , where r is a prime.

First u must induce a field automorphism on E, since Cri(T) = T. Thus
h

C (u) = L (r ) where m = n/p.
E 2

Let C (t) = E)(x) where D is cyclic and x inverts D. Then

[u, O , ( D ) ] c o (Cx(t)) n o t(D) = 1. Thus u centralizes O t(D), T.

On the other hand, u normalizes O (D), a cyclic p-group. Thus
p|c(u) n O ( D ) | > | o ( D ) i . Thus [CJ t ) : C J t ) n r (u)]< p. Now

P — P & & & —p = ™P mC (t) n C (u) I = r ± 1 and so r m P ± 1 < p(r ± 1). This inequality

is not solvable with r > 3, p > 3. Lemma 13. 5 is completely proved. /

Lemma 13. 6. If U is an abelian subgroup of X of type (2, 2)

is a co

E =<Clr(u) : u

and E is a component of E(X) not of type L (2 ), then

*7
41

Proof. Each u e U normalizes E by 13. 5 and induces an

inner automorphism on E. Further if u , u € U ? u ^ u , then u ,

u induce different inner automorphisms on E. But if E is not of type

L (2n), then the centralizers of any two distinct involutions of E are

distinct maximal subgroups of E. Hence the result. /

14. PROOF OF THE THEOREM A, PART I

Let G be henceforth a minimal counter example to Theorem A.

We show as an initial reduction that G is a non-abelian simple group all

of whose proper subgroups are A*-groups.

Thus let N be a minimal normal subgroup of G. Clearly O(G)=1

and O2(G) = G because otherwise G is immediately an A*-group. Thus

N is even.
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If N is a 2-group, then G = C~(N) because G/C~(N) has odd

order. Thus |N| = 2. Now G/N is an A*-group by induction. Since

O(G/N) = 1 and O2\G) = G, it follows that G/N = S/N x I /NX... X L /N,
1 K

where S/N is a 2-group and L./N are simple A*-groups for

i = l , 2, . . . , k.

Because the Sylow 2-subgroups of G are abelian, it follows by an

elementary transfer argument, see [12], that GT n N = 1 and so

G' n S = 1. Clearly GT is a perfect A*-group with O(GT) = 1 and so

GT is a direct product of simple A*-groups. Since S < G, G = GT x s

and G is an A*-group, a contradiction.

Thus we may assume that N is a direct product of isomorphic

simple A*-groups L , N = 1^ x . . . x Lfc.

Clearly CO(N) < G, C^(N) n N = 1 and so C~(N) is an A*-group

which has no non-trivial solvable normal subgroups. Thus

NC^(N) = Nxr (N) and G/NC~(N) acts as a group of automorphisms

of N. Since a Sylow 2-subgroup T of G is abelian and T permutes

the components L , . . . , L of N centralizing T n L., a Sylow 2-
1 K. 1

subgroup of L. for all i = 1, . . . , k, it follows that T normalizes each

component.

We show that a simple A*-group has no non-trivial outer automor-

phism x of order 2 which centralizes a Sylow 2-subgroup.

For simplicity write L = L and suppose that L is of type

L (p ). Clearly x must induce a field automorphism on L since a

Sylow 2-subgroup of PGL(2, q) is dihedral and non-abelian if q is odd,

and so n = 2m is even. But then a Sylow 2-subgroup of L (p ) is

non-abelian.

Thus we may assume that L is of type JR. Let S be a Sylow

2-subgroup of L, x an involution which induces an automorphism on L

trivial on S. Let t e S be an involution and suppose CT (t) = <t> x E

where F = L (q) c E c PIT.,(2, q) and q is odd. As above it follows
2 — —

that x must induce an inner automorphism on F. Hence there exists

f e F such that y = xf centralizes F and t.

It is easy to see that y must act trivially on E. For

[y, E] c CT (F) n CL(t) = <t> and so [y, E] = 1 because [E : F] is odd.

Thus y centralizes CT (t).
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Now y centralizes S and so normalizes IsL (S). By BurnsideTs
Transfer Theorem, NT (S) c CT (t). It follows that NT (S)/CT (S) is an
odd order subgroup of GL(3, 2) of order > 3. Hence NT (S)/C_ (S) is
a non- cyclic group of order 21.

Let Z/CT(S)O NT (S)/CT (S) have order 7. Either y centralizes
L = LJ J-J

Z or y acts on N (S) like the unique involution in S which is central-

ized by an element of order 3 in 1NL (S) n CT (t), viz. t. Thus either

[y, NL(S)] = 1 or [yt, NL(S)] = 1. In both cases, since [yt, CL(t)] = 1,

we have l/x) = L x (z), where z = 1, because CT (t) is a maximal
L

subgroup of L by 12. 2.
This shows that TL. c L.C~(L.) for all i and so TN c NC (N).

i = i G l = G

Thus G = NCQ(N) = N x CQ(N) because O (G) = G, and then G is an

A*-group if G is not simple.

Thus G is a simple group all of whose proper subgroups are A*-

groups. We remark that a Sylow 2-subgroup T of G has rank at least

3. For otherwise r(T) = 2 and | T | = 4 by [7], Then G = L (q) by

[13]

The proof of Theorem A proceeds by showing that either G is

itself an A*-group or G has a strongly embedded subgroup. But in that

case, by [4], G = L2(2n), Sz(22n+1) or U (2n). Of these only the groups

L (2 ) have abelian Sylow 2-subgroups and so G is an A*-group every

time. The proof of Theorem A will then be completed.

We study the structure of the minimal counter example G to

Theorem A by considering a collection of maximal subgroups containing

Cp(t), where t is an involution of G. The maximal subgroups studied

are ingeniously chosen in order to enable the exploitation of the uniqueness

Theorem B of Chapter 12 and its immediate consequence Theorem 12. 4.

As Bender points out in [5], the explicit definition of the class of maximal

subgroups used so frequently in the proof is required for only one result,

14. 1. In that result 14. 1, we identify a collection of subnormal subgroups

of F*(H), where H is a certain maximal subgroup containing C^(t).

These subnormal subgroups are ones over whose G normalizers we have

some control. They assume crucial importance in the results which

follow.
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Thus let G be a simple group with abelian Sylow 2-subgroups all

of whose proper subgroups are A*-groups. Assume that G contains a

3-generated abelian 2-subgroup and that G does not contain a strongly

embedded subgroup.

Let t be an involution in G. Let H be a maximal subgroup of

G containing C (t). Choose H in such a way that for some prime p,

O (H) * 1 but Co(t) n O (H) = 1. If, for no prime p, can we find a
P ^ P

maximal subgroup H ^ C (t) with a subgroup O (H) inverted by t,
— (jr P

choose H such that | E ( H ) | is maximal. Let M(t) be the set of all
maximal subgroups of G containing C^(t) satisfying the above con-

G

ditions. Note that if for some H e M(t), O (H) * 1 and CQ(t)nO (H) = l,

then every subgroup M e M(t) has for some (possibly different) prime

q, O (M) * 1 and CG(t) n Oq(M) = 1.

Let T be a fixed Sylow 2-subgroup of G containing t and let
77 = 7T(F(H)).

We now define a set & = Ct(H) of subnormal subgroups of

F*(H) satisfying a kind of uniqueness condition. Let U<3 0 F*(H). If

> 2, then U e a if and only if NG(U) c H. If

= 1, then U e a if and only if TT(F*(CO(U)) = TT(F*(H)). Note

that if U <J<1 F*(H) and N^(U) c H, then U e f t every time. For if
(jr =

F*(H) is a p-group and NG(U) = N (U), then by 12. 7,

F*(CG(U)) = F*(CR(U)) is a p-group also.

Here in 14. 1, we get criteria which allow us to recognize elements

of Ct(H) more easily.

Lemma 14. 1. Let V * 1 be a t-invariant subnormal subgroup of

F*(H). Each of the following conditions implies that V e Ot(H).
(a) V is C~(t)-invariant.

— (jr — — —

(b) Some subgroup U € d centralizes V and satisfies [U, t] = U.

(c) There is a non-cyclic abelian subgroup U of odd order, where

U c c (t) n Cn(V) such that (u> e a for all u € U#.

Proof. Assume that B c G, B D N G ( V ) .

Since E(H) c S = NQ(V) n F*(H) for all X « F*(H), S <1<3 F*(H).

Also CG(S) n F*(H) c CQ(V) n F*(H) c S. Apply 12. 4(a) and get
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O (B) n H = 1 for all q e TT(F(H))\ Thus since (V (t) c H and t
q G =

normalizes F(B) f, t must invert F(B) t.

Consider case (b). Let W = B n F*(H) => N^(V) n F*(H) => E(H).

Now we may apply 13. 4 with X = B and get [t, W] « F*(B). Now

U << W and so U = [t, U] « 1 [t, W]. Hence U « F*(B).

If |TT(F*(H))| = 1, put B = NQ(V), {p} = TT(F*(H)). Then

E(B) c CG(V) c C (U), since U < < F*(B) and is a p-group. (Remember

any subnormal p-subgroup of F* lies in F.) Now F(Cr(U) n C«(V)) is
Lr (jr

a solvable E(B)-invariant subgroup of B and so [E(B), F(CG(U)ncG(V))]==l.

Since Cr(U) n Cr(V) is an A*-group, E(B) c E(Cr(U) n Cr(V)).

Now [F(B) t, V] c V n F(B) T = 1, since V c F*(H) is a p-group.

Also [F(B) f, U] c F(B) T n F(B) = 1, since U is a subnormal p-sub-

group of F*(B).

Thus OP(F*(B)) c OP(F*(CG(U) n CG(V)).
But by 12. 5, if F*(C^(U)) is a p-group, then F*(C^(U) nCp(V)

yj yj CJ

is a p-group also. Thus F*(B) is a p-group also. By 12. 5 again,

F*(Cr(V)) is a p-group and so V e f t .

If |TT(F*(H)) I > 2, let B 3 NL,(V) be a maximal subgroup of G.
= = CJ

We know U « F*(B) and so NG(U) 3 E(B). Thus H n F*(B) 3 E(B)

because NQ(U) c H in this case. It follows that l ^ = H nF*(B)<<! F*(B).
Now CO(U ) n F*(B) c CO(U) n F*(B) c H n F*(B) = U .

u l = KJ = l

Taking S = NG(V) n F*(H) DE(H), we have first S <1<3 F*(H),

then S c B, CG(S) n F*(H) c S. Apply directly 12. 4(c) and get
H = B 3 N J V ) and V e Gt(H). This verifies (b).

= G
Suppose now (b) does not apply. Let B be a maximal subgroup of

G containing N"G(V). By 12. 4(a), O (B) n H = 1 for all q e TT(F(H))T.

Thus since C j C H and t normalizes O (B), if F(B) , * 1, t must

invert some non-trivial O (B) for some q. But then t must have

inverted some non-trivial O (H) for some prime r! But then U=O (H)

is abelian and contained in Z(F*(H)). Clearly U = [U, t] and N (U) = H.

Hence U e a. Since [V, u] = 1, (b) shows that V e Gt(H). Thus we may

assume that FCB)^ = 1.

Moreover, t does not invert any subgroup O (H) for any prime

p. For then O (H) e Gt(H), O (H) c Z(F*(H)) and by (b) V e Ct(H). Since
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H e M(t), E(H) must then be of maximal possible order. But B is a

maximal subgroup containing Cr(t) if (a) applies. Since H €M(t),

|E(H) I > |E(B) |. It is clear that we have directly reproduced the hypo-

theses of 12. 4(d) since H, B are A*-groups. Thus we have

H = B D N-(V) and V e a(H) if |TT(F*(B)) I > 2 since otherwise 12. 4= G =
does not apply. However, if TT(F*(B)) = {p}, then F*(C~(V)) is a

p-group also by 12. 5. Thus in any case V e

Incase (c), <u> <<1 F*(H), u e U#. Since <u> is cyclic,

<u> c F(H) for all u e U#. Thus U c F(H).

Suppose | zr(F*(H)) I > 2. Let B be a maximal subgroup of G

containing N_(V). Since U c OF(C_(t)). Apply 13. 5(b) and get that every

component of E(B) is centralized by some non-trivial element of U.

Thus if N = O7T(F*(B)), then N = <CN(u) : u e U#>. Since <u> e Gt(H)

and |TT(F*(H)) | > 2, CG(u) c H. Thus N c H. By 12. 4(b), FfB)^ c H.

Hence F*(B) c H. We may apply 12. 4(c) since N(V) n F*(H) c B to

get V e a(H).

If F*(H) is ap-groupand V t a(H), then F*(CG(V)) is not a

p-group. As remarked above, every component of E(B), where

B = C^(V), is centralized by a non-trivial element ueU. Since
(jr

<u> e a(H), F*(C^(u)) is a p-group. But V c F*(H) is a p-group and
G =

by 12. 5, F*(Cr((u)V)) = F*(Co(u)) is a p-group. But clearly
n

CG(u) n Cr(F*(Cr(V))) contains non-trivial p'-elements for suitable

u € U#. Since CG(u) n OP(F*(CG(V)) c F*(CB(u)) by 10. 7, we have the

required contradiction. This completes the proof of 14.1. /
Lemma 14. 2. H has at least 2 classes of involutions.

Proof. If g € G, t e H n Hg, where exists h e H such that

tg h = t, if H has one class of involutions. But then g-1h cCJtjCH
and so g € H. Thus, if H has one class of involutions, H n H^ has odd
order, if g e G - H. Hence H is strongly embedded in G, a contra-
diction. /

Lemma 14. 3. Let R be a subgroup of T such that

r(R) = r(T) - 1. Then M(s) * {H} for some involution s e R.
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Proof. Suppose M(s) = {H} for all s eft (R) . First if

M(s) =»M(sg) = M(s)g = {H}, then clearly g e NG(H) = H.

Let n e NG(T). Since r(T) > 3, R n Rn ± 1 and so there exists

an involution s € R n R . Then s, s e R and by assumption

M(s) == M(sn ). Thus n e H, N_(T) c H.
VJT =

But every involution of G is conjugate by an element of 1NU(T)
G

to an element of R. Hence M(s) = {H} for all involutions s e H. Now
if s e H n Hg, where s is an involution, then g e Nf(H) = H and H is
strongly embedded in G. /

Lemma 14. 4. Let D be a T-invariant subgroup of odd order
such that [t, D] * 1. Then T contains a subgroup R such that
r(R) = r(T) - 1 and [t, CD(R)] * 1.

Proof. Without loss of generality, D is a p-group and Cn(t)<J D

and T acts irreducibly and non-trivially on D/Cn(t). Since T is

abelian, T induces a cyclic group of automorphisms on D/Cn(t). Also

t acts non-trivially on D/C (t). Let R = C (D/C (t)). Then clearly

r(R) = r(T) - 1. Also CD(R). CD(t) = D since C D / C (t)(R) =

CD(R)CD(t)/CD(t). Since [t, D] * 1, [r, CD(R)] * 1. //

Lemma 14. 5. Let p be an odd prime such that [t, O (H)] ± 1.
If P = O (H), then P has a C^t) invariant subgroup P such that

P *? ~
[t, P] ± 1 and_ V € Ct(H) for any t-invariant subgroup V ctf_ P, V ^ 1.

Proof. Suppose the result is false.

Let V = Cp(Cp(t)).

First if [t, V] = 1, then [t, P] = 1 by 2. 2. This is not the case.

Thus [t, V] is a C (t)-invariant subnormal subgroup of F*(H). Thus
u = [*> v ] e a(H) bY 14« !(*)• N o w f o r anY subgroup W of Cp(t) we have

[W, U] = 1. Since U € Ct(H), W e a(H) by 14. l(b).

If C (t) is non-cyclic, there exists a non-cyclic normal 2f-sub-

group U of type (p, p) of Cp(t), which is, as seen above, an element

of a(H). So by 14. l(c), since l^ c Cp(t) n Cp(V), V e a(H). Finally

if Y is any t-invariant subgroup of V, Ye ®(H) by the same argument.
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Letting P = V we have the result.

If Cp(t) is cyclic, first every Cp(t)-invariant abelian subgroup

A of P is centralized by t. For otherwise, [t, A] e ($(H) by 14. l(a)

and then any t-invariant subgroup of [t, A], being centralized by

[t, A] e Ct(H), is itself an element of Ct(H) by 14. l(b).

Therefore every Cp(t)-invariant abelian subgroup of P is con-

tained in Cp(t) and so is cyclic. It follows that Z(PT) is cyclic. Now

any normal subgroup Q of P of type (p, p) lying in P ' is clearly con-

tained in Z(P!). For P/Cp(Q) c GL(2, p) and so has order < p. Thus

P ' c c (Q). It follows that PT is cyclic since p is odd. Further

p? i cp(t).
~~ t - i x t x x

Now if x e P , x = x , then for y e PT we have y = y = y .

Thus [x2, y] = 1 and [x, y] = 1. Since P = Cp(t)I where

I = {x e P : x1 = x"1 }, PT c Z(P). Let Q = ^ ( P ) . Since P has class

< 2, Q has exponent p and Z(Q), being cyclic, has order p. Also

CQ(t) = Z(Q).

Every non-abelian subgroup M of Q is an element of &(H).

For MT = Z(Q) and so N_(M) c N^(MT) = H. On the other hand, if
\j = (jr

L # 1 is an abelian t-invariant subgroup then either L c C~(t) = Z(Q)

and L e G(H), or [t, L] * 1. If x e L is such that x = x"1, then

L € Gt(H) if (x) e G(H) by 14. l(b). Thus either every t-invariant sub-

group of Q lies in ®(H) or there exists x e Q such that x = x"1,
<x> i a(H).

Consider [t, CQ(x)] = V. If V€a(H) then so is <x> by 14. l(b),

a contradiction. Hence V is abelian. But

CQ(x) = (CQ(t) n CQ(x))[t, CQ(x)] c z(Q)[t, CQ(x)] = Z(Q)V.

Thus CQ(x) is abelian and of index p in Q. For the centralizer

of any non-central element of Q is of index p in Q. Since C~(x) is

not cyclic, it is not Cp(t) -invariant. Thus Q has two abelian maxi-

mal subgroups and so |Q | < p 3 .

Now let R c T, r(R) = r(T) - 1 and C^(R) <t Z(Q). Such an R
= Q -

exists since we could take R £ C ( Q /$(Q)) where Q is an irreducible
T submodule of Q/$(Q).
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Choose g e G such that tg e R. Then CG(tg) <{: Z(Q) and so

Hg * H. Put K = [t, CQ(tg)] c H n Hg since C(tg) c Hg Let K̂  be

the normal closure of K under Cr(t) n Hg. Since K c Q, K CQ and

is a p-group. By 12.4, [t, K j « F*(Hg) and K= [K, t] c [K^ t].

Since [K^ t] is a p-group, K« F*(Hg). Thus K c F(H^) and so
K C Q £

If K = Qg, then K = Q since K c Q. Then g e N(Q) = H, a
contradiction since Hg * H. Thus KCQ g , |K | < p2. But K = [K, t]
and so CK(t) = 1. Thus |K | = p. But K c CG(tg) and so K = Z(Qg).
Therefore N_(K) c Hg.

Cjr =

Now H, Hg are conjugate A*-groups and OP(F*(H)) cc_(K)CHg.
= G =

Thus if S = NG(K) n F*(H), S => E(H) and S <K F*(H). Also
C^(S) n F*(H) c S.

If |TT(F*(H))| ^ 1 , then H = Hg by 12. 4(e), a contradiction.
Therefore F*(H) = P and T acts faithfully on P and also on Q and
also on Q/$(Q). Since then T c GL(2, p) and r(T) > 3, we have a
contradiction. /

Lemma 14. 6. If F*(H) is a p-group, where p is an odd prime,
then for any involution s eG and any M e M(s), F*(M) is also a p-
group.

Proof. From 14. 5, there is a C ^ /TJ>.(t)-invariant subgroup P
Op(H)

of O (H) such that [t, P] * 1 and V e Ot(H) for every t-invariant sub-

group V of P. Now by 14. 4, there exists a subgroup R c T such that

r(R) = r(T) - 1 and W e [t, C^(R)] ^ 1. Of course W € Gt(H). By 12. 1,we may assume that our involutions s e R. Let M e M(s). Let
C (t)

W = W , the subgroup generated by the C (t)-conjugates of W.

Since WCO (H), CG(t)CH, w
x £ ° (H) and so Wx is a p-group. By

12. 4, [t, W j « F*(M). Thus W = [t, W] c Wi is a subnormal sub-

group of F*(M). Hence W c O (M).

If P = O (M), U = N (W), since F*(N (W)) is a p-group

(W € Ct(H)!), F*(CG(U)) is a p-group also by 12. 5. For

Cn(U) c C^(W) c N (W). Now by 12. 6, F*(C^(P)) is a p-group also

since U c P. It follows that F*(NG(P)) = F*(M) is a p-group also.
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This completes the proof. /

The following major Theorem is the cornerstone on which the

whole proof res ts . Its proof is at least staggering in its power and

originality. Of course, it is due entirely to Bender.

Theorem 14. 7. Let p be an odd prime such that [t, O (H)] = l.

Let V be an elementary abelian p-subgroup of O (H) such that

r(V) > 3. Then CG(v) c H for all v e V#.

Proof. If [t, F*(H)] * 1, then either W = [t, O (H)] * 1 for

some prime q ^ p , or W = [t, E(H)] ^ 1 is an element of (£(H) by

14. l(a). For both W , W are CH(t)-invariant and subnormal in F*(H).

But then <v> c V c O (H) centralizes W or W and then 14. l(b)
= = P 1 2

implies that <v> e a(H) for v e V - 1. Then Cp(v) c N o « v » c H
G = Cjr =

since F*(H) is not a p-group.

Thus t e C (F*(H)) = Z(F*(H)). Let W = (^(V) n F*(H).

Let ^(X), where X c G, be the set of all W-invariant A*-sub-

groups K of X such that K = F(K) fE(K) and no component of E(K)

is contained in H.

If ^(G) = {1}, then for any maximal subgroup B of G, B => W,

it follows that F(B) is a 77-group and E(B) is a product of components

which all lie in H. For if a component of E(B) does not lie in H, then

neither does any of its W-conjugates. Then E € ^(G) * {1}.

Thus E ( B ) C H and F(B) c H by 12. 4(b). Note that OP(F*(H))*1

since t e F*(H). Thus F*(B) c H. But C^(W) n F*(H) c W and WCB.
= G = =

By 12. 4(c), we have B = H and H is the only maximal subgroup of G

containing W. Clearly if v e V#, CG(v) => W and so CQ(v) c H. Thus

we may assume that ^(G) =£ {1}.

We derive a contradiction to the simplicity of G from ^(G) * {1}

by a series of steps.

(i) If W c X c G, then [t, F*(X)] e ^ X ) .

For if W c X c G, then t inverts F(X) t elementwise by 12. 4(a)

since t e W. Also t centralizes F(X) T c H by 12. 4(b) since if

q € 77, [O (X), Oq(F*(H))] = 1 and t e Oq(F*(H)) * 1. Now [t, E(X)] is

the product of those components of E(X) not centralized by t, and since
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H/CH(O (H)) has odd order, [t, E(X)] is the product of those com-
ponents of E(X) which do not lie in H. For any component of E(X),
which lies in H, lies in C^(O (H)) c r (t). Note t e Z(F*(H)).

Lx 2 = Ki

Consider now [t, F*(X)]. This group is a W-invariant normal

subgroup of F*(X) and by the argument of the previous paragraph and the

structure of normal subgroups of F*, [t, F*(X)] € ^(X).

(ii) (^X)) e^X) if X c G.

Let K € <U(X) where X c G. Then K centralizes F(X). For

[K, F(X) , t] c [FfX)^, t] = 1 since t centralizes F(X) by 12. 4(b).

[FCX)^ t, K] = 1.

Hence [K, t, F{X) ] = 1 and K = [K, t] centralizes F(X) .

Also t inverts F(X) f and so commutes with K in its action
on F(X) f. Thus K = [K, t] centralizes FfX)^. Hence [K, F(X)] = 1.

Now if X c G, X is an A*-group, t € O*(X) and so
K = [K> *] S: O*(X) n CQ(F(X)). It follows that K c F*(X).

Thus K = [K, t] c [F*(X), t] e °U(X) by (i). Hence

c [F*(X), t] e^X).

(iii) There exists R c V such that V/R is cyclic and

First replacing V by Vfi (Z(O (H))) if necessary we may assume

that CG(V) c H. Choose K e 01(0. If F(K) * 1 , then [V, F(K)] * 1.
For otherwise F(K) c C^(V) c H. But F(K) n H = 1 by 12. 4(a). Let= G =
Z be a minimal W-invariant subgroup of F(K) such that [V, Z] # 1.

Let Z c z be an irreducible V-module. Define R = CV(Z ). By

Clifford Theory, Z = Z 0 . . . © Z and W permutes transitively the

irreducible V< W modules. Since R c Z(W), R c y z ) . Thus

Z ecU(CG(R))

If F(K) = 1, let E be a minimal W-invariant normal subgroup

of K. Then [V, E] * 1 because otherwise E c CQ(V) c H and E ^ H

since K e ^(G). Let Y = EV<t). Then V c OF(Cy(t)) normalizes

every component E of E and induces a cyclic group of automorphisms

on each such E by 13. 5. Let R c C (E ), be such that V/R is cyclic.
1 — V 1 ^

Since V c Z(W) and W permutes the components of E transitively,

R c C (Ew). Thus EW € CU(CG(R)). Thus (iii) is done.
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Let M = ( ^ ( C ^ R ) ) ) € 0 1 ( 0 by (ii). Let v e R and put

Y = (%(C^ (v))>. Then M c Y e ^(G).
V LJ = V

We show

(iv) Y = Y normalizes M.

For since Y e ^(G), F(Y) = Z(Y) normalizes M c Y. Let E be

any component of E(Y). If E c M, fine. If not, [V : C (E)] < p as

before. If C (E) => R, then E c E W €<CU(CG(R))) = M. Thus C ( E ) £ R

and so V = RCy(E). It follows that [M, Cy(E)] = [M, Cy(E)R] = [M, V].

Now M = F(M)E(M) e %(G). As V-group,

F(M) = (CG(V) n F(M))[F(M), V]. But CQ(V) n F(M) c H n F(M) = 1 by

12.4(a). Thus F(M) = [F(M), V],

Let L be a component of E(M); V normalizes L as before and

[L, V] < L. If [L, V] c z(L), then [L, V] = 1 as usual. Thus

[L, V] = L and [M, V] = M = [M, Cy(E)].

Now [Cy(E), E, M] = l;

[E, M, Cy(E)] = 1, since E < Y = F(Y)E(Y).

Therefore [M, Cy(E), E] = [M, E] = 1. We have shown that

either a component of E(Y) lies in M or it centralizes M. Thus

M < Y = Y .
= v

(v) (^(G)) e ^ G ) .

Let S e ^(G). First S = <Co(v) : v e R ) since R is non- cyclic.

Remember r(V) > 3 and V/R is cyclic and apply 13. 5. Now if v e R,

Co(v) n F(S) is a W-invariant nilpotent 77T-subgroup of S and so

Cg(v) n F(S) = (OlCCgW n F(S))>.

Thus F(S) = ( ^ C o W n F(S)) : v e R # > .
#

On the other hand, if E is a component of E(S), choose v f R

such that Ce(v) D E and then E W c Co(v) and E W c %(CJv)). Thus
O — = b = b

S = F(S)E(S) = (^(CgCv)) : v e R # ) .

But then S c NQ(M) c G since (^(C (v))> = Y y < M, for all

V e V. Hence (^(G)) c (^(N (M))) €
= (J

Now W « H. Let W <1 Wx < . . . < W n = H. Then Wi p e r -
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mutes the elements of ^G) and hence normalizes (^(G)) = A, say.

Arguing inductively we get H normalizes A c Np(M) c G and since H

is maximal in G we have first A c H and then A = 1 since A e

This contradiction completes the proof of 14. 7. /

Lemma 14. 8. Let p e TT, p * 2, V c O (H). Let M e M(s) for
_ p

some involution s e T, M * H. Assume 7r(F*(H)) > 2, V c M and either

(a) CG(V) c H, V = [V, t];

(b) t e Cn(v) c H for all v e V# and V is abelian of type (p, p);
•v Vjr —

or (c) t e CG(V) £ H and T D W, where W is of type (2, 2) such
that C~(w) c H for all w e W#.

(jr =

Then OP(F*(M)) C H , 0 (H) c M. If [s, V] = 1, then

r(Op(H)) = 1 < r(Op(M)).~

Proof. Let P = O (H), Q = O (M). In case (a), let
cM(t) p P

V1=V £0 (H). Thus applying 13. 4 to Vx we get [t, V^« F*(M).

Since V is a p-group and V c V in case (a), V <J<J F*(M). Thus

V c O (M) = Q and CP(F*(M)) c r (Q) c CP(V) c H.
= p = G = G =

In case (b) by 13. 5, V C- OF(CM(t)) normalizes each component of

E(M) and induces a cyclic group of automorphisms in each such compo-

nent. Thus OP(F*(M)) c (C.(v) : v e V#> c H.

In case (c), V c OF(C (t)) normalizes each component of E(M)

and centralizes any component of type L^(2n) or JR. Thus every com-

ponent of E(M) of type L (2n) or JR lies in H. Clearly
F(M) . c (C^(w) : w e w) c H. If a component of E(M) is of type L (q),

p = G = 2
q odd, it is normalized by T and W and by 13. 6 is contained in

<Co(w) : w e W#> c H. Thus OP(F*(M)) c H in every case.
\_x — —-

If r(Q) <g 2, then since [P n M, OP(F*(M))] c OP(F*(M)) n P, a

solvable normal subgroup of F(M) tE(M). Thus [P n M, E(M)] = 1 by

a familiar argument. Clearly [P n M, F(M) t] = 1. Thus

[P n M, OP(F*(M))] = 1.

By 12. 4, P n M c o (M) = Q. In particular Cr(C7/rkv(P n M)) =
= P Cjr 6{<4)

C G ( Z ( Q ) ) C M .

If r(Q) > 3, then |TT(F*(M))| > 2 because otherwise F*(M) is a

p-group and the F*(H) would be a p-group by 14. 6. This is not the case
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by hypothesis. If [s, Q] ± 1, then [s, Q] is a Cr(s)-invariant sub-

normal subgroup of F*(M) and so [s, Q] e a(M) by 14. l(a). Then

C7/Qs(PnM) centralizes [s, Q] and is clearly s invariant. By

14. l(b), CZ(Q)(P n M) e a(M). Hence CG(CZ(Q)(P n M)) c M.

If [s, Q] = 1, then for all v e CZ(Q)(P n M), CG(v) c M by

14. 7 since r(Q) > 3.

Thus in every case we have shown that ^n^Z(O)^ n M ^ — M '
Now V c P n M and so C~(P n M) c CO(V) c H and so= G = G =

V n M) c Q n H. Thus C^(Q n H) c M.

It follows that [CT(F*(M)), Cp(Q n H)] c P n OP(F*(M)) and, by

a now very familiar argument,

9 Cp(Q n H)] = 1.

We now have OP(F*(M)) (Q n H) acting on P and OP(F*(M))

centralizes Cp(Q n H). Thus OP(F*(M)) centralizes P. Since

OP(F*(M)) * 1, F c M.

We are left only with the last assertion.

Suppose therefore that [s, V] = 1. We have already seen that if

r(Q) < 2, then P n M = P c Q. Thus if r(Q) < 2, then r(Q) > r(P).

Suppose that r(Q) = r(P). Then Q (Z(Q))P has a subgroup of rank

> r(Q). It follows that ft (Z(Q))P = P and so Cp(P)ccp(fi (Z(Q)))CM.

Therefore F*(H) c M since P c M. Now OP(F*(M)) c H and P C Q ,

We have P CO(P)OP(F*(M))(= S)c H. By 12. 4(c), H = M, a contradiction.

Thus if r(Q) < 2 then r(P) < r(Q) and so r(P) = 1, r(Q) = 2.

Assume therefore that r(Q) > 3 and [V, s] = 1. If [s, Q] * 1,

apply 14. 5, replacing t by s, H by M, to get a subgroup Q of Q which

is Cr(s)— invariant such that [s, Q ] * 1 and Q e Gt(M) for all

s-invariant subgroups Q of Q . Now V c Cp(s) and so V normalizes

Q Let V = [Cn (V), s]. Since V, Qn are p-groups, C n (V) * 1.
_ ! 1

If V = 1, then by 2. 2, [s, Q ] = 1, a contradiction. Thus V * 1,
V = [V, s] c Cp(V) c H and all s-invariant subgroups of Q are elements
of a(M). Since |TT(F*(M)) | > 2, NG(V) c M. We have thus verified that
the hypotheses of (a) apply to H, s, V. It follows that OP(F*(H)) c M
and also that Q c H. Thus F*(H) c M, F*(M) c H and H = M by
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Theorem A. This is not true and so [s, Q] = 1.
Now we find an Q, (T)P-invariant normal abelian subgroup V of

Q of type (p, p). Let A be a maximal abelian normal subgroup of

QPft (T) contained in Q. If A c C~(A), we can find A c B c C~(A)
i W — ^

such that B/A is an irreducible QP£1 (T)-module and B/Acz(QP/A).

Then £1 (T) acts irreducibly on B/A and since T is abelian, £2 (T)

of exponent 2, B/A is cyclic. Thus B is abelian, a contradiction, and

A = C~(A) e Seoi(Q). If A is cyclic, then Q/A is also cyclic and

r(Q) < 2, not the case. Thus A is non- cyclic and Q (A) has a chief

(T) series with cyclic factors. The group V has been located
successfully.

Any such group V lies in an abelian subgroup of type (p, p, p).

For since r(Q) > 3, there exists X c Q of type (p, p, p). Since

X/CX(V) c GL(2, p), [X : CX(V)] < p. If CX(V) + V, then VCX(V) is

abelian and > 3-generated. If CV(V) = V, then V c X. Apply 14. 7
— yv —

and get CQ(v) c M for all v e V#.

If V c H, we may apply either conditions (a), (b) to M, V, s. For

if [s, V] * 1, then let V̂  = <vx> where v® = v"1. Then C^fl^) c M

and [V s] = V . If [s, V] = 1, then (b) applies directly. Thus

OP(F*(H)) C M and QCH. Hence F*(M) c H, F*(H) c M, a contra-

diction, using Theorem A and M * H. Hence V ^H.

Now V < VV and for some v e V, Cr(v) 3 V. Thus if (b)

applies V c H, which we have already ruled out. In case (c),

V c <C (w) : w e W > because W c tt (T) and again V c H. Thus we

must be in case (a), CG(V) c H, V = [V, t].

If Cp(V) e Gt(H), then NG(Cp(V)) c H and V c H. So Cp(7)*Gfc(H).
Now PT c Cp(V) and PT € (̂ H) if PT * 1. Thus if PT ^ 1,

V c N (PT) c H, a contradiction. It follows that P is abelian, [t, P] * 1
because V c p. Apply 14. l(b) and find that every non-trivial t-invariant
subgroup of P is an element of &(H). In particular Cp(V) = 1 and P
acts faithfully on V. Since V is of type (p, p), P is cyclic. /

15. PROOF OF THEOREM A, PART E

Lemma 15.1. t e F*(H).
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Proof. We show that [t, O(H)] = 1 and the result follows from

13.1.

Let p € 77, p * 2, P = O (H). If F*(H) = O (H), then O(H) = 1

and we are done. Assume therefore that [t, P] * 1.

By 14. 5, there exists V c P which is C (t)-invariant such that

[t, P] ± 1 and V e Ct(H) for all t-invariant subgroups V of P. By

14. 4, there exists R c T such that r(R) = r(T) - 1 and [t, Gp(R)] * 1.

Let V = [t, C^(R)] € Gt(H).

By 14. 3, {H} ^ M ( S ) for some involution s e R.

Suppose M eM(s), M * H, s e R. If P * F*(H), then 14. 8(a)

applies to V c CG(R) c c (s) c M. Since [s, V] = 1, P is cyclic and,

since r(M) > 1, M is not conjugate to H. Now [R, V] = 1 and so R

centralizes P, a cyclic group.

Choose g € G such that tg e R. Since [tg, P] = 1, [t, P] * 1,

g ft H. Thus Hg e M(tg) and Hg * H. This contradicts the assertion

of 14. 8.

Thus P = F*(H) and so by 14. 6, F*(M) is a p-group for all

M € M(s) and for all involutions s e G. In particular F*(M) is a

p-group for s e R, Me M(s).

By the ZJ-Theorem of Glauberman, H = N"G(Z(J(S))), where S

is a Sylow p-subgroup of H. It follows that S is a Sylow p-subgroup of

G. Similarly M = No(Z(J(Sg))) and so H, M are conjugate.

Now V c r (R) c r (s) c M = Hg.= P = G =
Choose U ^ V maximal such that U is a p-group and U c H n H&,

g ^H. Clearly U is not a Sylow p-subgroup of H by the ZJ-Theorem.

Thus Nr(U) £ H.

We break the remainder of the proof into steps.

(i) Every p-subgroup P of G containing a Sylow p-subgroup

U of N^U) lies in H.
1 H x

For if P lies in a Sylow p-subgroup S of G, then

H n HX 3 Ui 3 U and by the choice of U, x e H. Thus Pi c H.

(ii) CG(U) c U.

O (NO(U))U c H by step (i) and if x e N^(U) - H, then
P ijr 1 = KJ

O (NO(U)) c H n Hx. Maximality of U forces U = O (N^(U)). Now
P KJ = p KJ
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since V e G(H), F*(C~(V)) is a p-group and by 12. 6, F*(C^(U)) is a

p-group also. Thus F*(N_(U)) = O (N^(U)) = U and so CP(U) c U.
Lr p KJ (jr =

This verifies (ii).
Among all groups N~(Y) 3 Np(U), where Y ^ 1 is a p-group,

choose N so that first | N | is maximal, and then |o (N) | is maximal,
and then | N | is maximal. Let O (N) = Z, O T (N) = X.

(iii) X = O (N) x o T(N).
For O t(Nx(U)) c cx(U) c u by (ii). Hence NX(U) is a p-group.

Since NV(U) < N^(U), NV(U) c O (N_(U)) = U. Now U normalizesX — G X = p G
some complement A to O T(N) in X. Then UA is a p-group. Since

NG(U) n UA = U, UA = U and A c u. Thus U n X is a Sylow p-sub-

group of X and so N r ( U n x ) ^ N J U ) and |lNU(Unx)| > | N | .
LJ = (jr (jr p = p

Since U n x ^ Z , by the choice of N, U n X = Z. But U n X is a Sylow

p-subgroup of X. Hence X = O , ( N ) x o (N).

(iv) N is a p-constrained group.
We show that C^(Z) has odd order and so CXT(Z) is solvable.

G N
Hence CN(Z) c O t (N) as is well known. Let s be an involution in
C-(Z) and take M e M(s).G

If [s, O (M)] = 1, then p = 2, since O (M) = F*(M) and then

F*(H) is a 2-group by 14. 6. This is not the case. Thus by 2. 2,

[s, CG(Z) no(M)] ^ 1 .

Then [s, CG(Z) n O (M)] is a C (s)-invariant p-subgroup of N.
By 13. 4, [s, CG(Z) n O (M)] « F*(N). Hence [s, CG(Z) n O (M)] c

O (N) = Z and so [C (Z) n O (M), s, s] = 1. Apply 0. 2 and get a

contradiction. Therefore C^(Z) has odd order and (iv) holds.

We may now apply the ZJ-Theorem to N. Some Sylow p-sub-

group S of N contains a Sylow p-subgroup of NW(U) and so lies in H

by step (i). By the ZJ-Theorem, N = O f(N)NN(z(J(S))). But then

Z(J(S)) C O , (N) = O t(N) x o (N) and so Z(J(S)) c O (N). Thus

N = NN(Z(J(S))) and since | N | is maximal, Z(J(S)) < N. But

Z(J(S))<H since F*(H) is a p-group. This shows that N D H. But

N D N (U) and NG(U) ^ H. This completes the proof of 15. 1. /

Lemma 15. 2. O(F(H)) has rank at most 2.
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Proof. Assume r(O (H)) > 3 for some odd prime p. Let

P = £1 (Z (O (H))). Since p is odd, P has exponent p. Every normal

subgroup of O (H) of type (p, p) lies in P and so P is non-cyclic.

(If P/$(P) = P ^ P ) x . . . x Pk/$(P), where P./$(P) is an

irreducible T-module, define R c C (P /$(P)) of rank r(T) - 1. This

is possible since T is represented on P /$(P) as a cyclic group. If

P /$(P) is not cyclic, choose W C R with r(W) = r(R) - 1. Then

clearly r(Cp(W)) > 2. If P /$(P) is cyclic, then k > 2 because

P/<£>(P) and P are not cyclic. Choose

W c ker (T -* aut P i /$(P)) n ker (T - aut P2

such that r(W) = r(T) - 2. Again r(Cp(W)) > 2 since r (Cp /^/p )(W)> 2.

Now if v eP , (v)Z(O (H)) < O (H) since P c Z2(O (H)). Thus

X = (v>£2 (Z(O (H))) is an elementary abelian normal subgroup of O (H).

Either r(X) > 3, in which case X lies in an element of Sett (O (H)),

or r(X) < 2 in which case X still lies in an element of SGOl (O (H)).

For by [8] I. 8. 4, 860^(0 (H)) * 0, and if Y e 3601^0 (H)),

|Y/Cy(X) |<p. If C y ( X ) i x then XCy(X) < Op(H) and r(XCy(X))> 3.

If CV(X) c x, X c y and we are done already.
#We can thus apply 14. 7 to find that C^(v) c H for all v e P .

By 15. 1, 2 e TT(F*(H)). NOW take V c Cp(W) of type (p, p).

Since [t, O (H)] = 1, t e CQ(v) c H for all v e V#. Also if s e W, then

[s, V] = 1. Apply 14. 8 and get that if M e M(s), M * H, then r(O (H))=l.

This is not true by assumption. Thus {H } = M(s) for all s e W.

If W is non-cyclic, there exists a fours-group W c w and

t e Cr(V) c H, where V is a subgroup of Cp(R). Also s e R and so

[s, V] = 1. Moreover CG(w) c H for all w e W . Apply 14. 8(c) to

get that if M e M(s), M * H, then r(O (H)) = 1. This shows that

M(s) = {H} for all s € R. This contradicts 14. 3.

Thus we have W is cyclic and r(T) = 3. Thus all involutions of

G are conjugate.

Consider W = T n F*(H). If V is any subgroup of P of type

(P, P), V2 c Cp(Wx) because [W^ P] = 1. Now t e CQ(v) c H for all

v € V^ and if s e W^ [s, V j = 1. By 14. 8(b), r(O (H)) = 1, a contra-
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diction unless {H} = M(s) for all s eW . Of course t eW and so

M(t) = {H}.

If W is non-cyclic, then since r(T) = 3, we have an immediate

contradiction to 14. 3. Thus W = <t> = T n F*(H) c Z(H) and H = C~(t).
1 = CJ

Now suppose M e M(s), s e R, M * H. Then M is conjugate to H

because all involutions are conjugate and M(t) = {H }. So {M } = M(s).

But C J s ) 3 C J R ) ^ l and so P n M * 1. Thus C r (PnM)c r (V)CH,
XT n.— if VJ — G —

v e P O M . It follows that [t, CG(P n M)] = 1. Now we have

(t) x p n M acts on O (Z(M)) and by 2. 2, [t, O (M)] = 1. Thus
O (M) c H.

P =
Now choose V c O (M) of type (p, p). Remember M is con-

jugate to H and so r(O (M)) > 3. Then V c H, [s, V] = 1 since

M = CG(s). Interchanging s, t, H, M in 14. 8, s e CAv) c M for all

v e V, V is of type p, p; [t, V] = 1. Since M * H and r(O (M)) =
r(O (H)) > 3, we have a contradiction. /

P =
Lemma 15. 3. H/E(H) is solvable.

Proof. We show that H/CH(F(H)) is solvable and so

H/P(H)CXI(P(H)) is solvable. Since F(H)CU(F(H))/F*(H) has odd order,
H Jci

it is solvable. Hence the result.

Let K = H^°°\ Then K acts on F(H) and if [K, F(H) ] = 1,

for all p, then CH(F(H))=>H^. Thus choose p such that [K, F(H) ] * 1 .

Since K = OP(K) there exists a pT-subgroup X c K such that

[X, F(H) ] * 1. Let D be a Thompson critical subgroup of F(H) and let

C = ft (D). Of course p ± 2 because H/C(F(H) ) is odd order and

solvable and so K c CR(F(H)2).

Now by 15. 2, r(O(H)) < 2 and so | c | < p3 . Letting C = C/$(C),

we have first C^CC) is a p-group, and K/C^(C) is a subgroup of

GL (2, p) and an A*-group. The only such subgroups are solvable. Thus

K is solvable, a contradiction. /

Lemma 15. 4. Let K be a component of E(H). If {H} = M(s)

for every involution s € CT(K), then Np(T) c H.
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Proof. Let W = C (K). Assume N (T) £ H = M(s) for all

s e ft (W).

(i) T is elementary abelian.

For let g"1 e NG(T) - H. If W n Wg * 1, then there exists

w, wg e W involutions and {H } = M(w) = M(wg). It follows that g e H,

a contradiction. Since T = (K n T) © W and K n T is elementary, W

is elementary.

Let X, Y be defined as follows:

X = NH(T)/CH(T), Y = NG(T)/CG(T).

(ii) K < H.

Since C~(T) c r (t) c H, X c Y. By assumption X * Y. If
(jr = Qj = =

y e Y - X, W n Wy = 1 and so | W | < [T : W] = |Q |, where K n T = Q.

In particular there are at most two components of E(H) with Sylow 2-

subgroups as large as Q. Moreover if | T | = | Q | 2 and E(H) is a

central product of two groups isomorphic to K, then H cannot permute

the two groups K. It follows that K < H.

Let | Q | = q. Choose a subgroup R of K of order q - 1 which

centralizes W and is regular on Q. We show that

(iii) X = Ny(W) => Ny(Ro) for all subgroups R Q * 1 of R.

For if n e N y ( R o ) , then Wn is centralized by R " = R Q . Since

R acts regularly on T/W, Wn = W and so N (R ) c N (W) because X

normalizes K. But if y e Y - X, then W y n w = l . Therefore

X = Ny(W).

(iv) If TT(F(Y)) ± 7i(F(Y) n X), then | w | = 2, | Q | = 4.

If TT(F(Y)) * TT(F(Y) n X), let N c Z(F(Y)) be a minimal normal

subgroup of Y such that N n X * 1. Then every element of R acts

fixed-point freely on N since CO(R ) c X for all subgroups R of R,
rv 0 — 0

R Q * 1. Put C = CT(N).
F i r s t C n W c w n w n , n c N and so C n W = 1. Hence

C = [C, R] since R is regular on T/W. Because R ^ K ,

C = [C, R] c K n T = Q. But R is regular on Q and so C = Q or

C = 1.

Suppose C = Q. Then
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T = [N, T] © CT(N) = [N, T] 0 Q.

Here [N, T], Q are R-modules and so

CT(R) = (C(R) n [N, T]) ^ CQ(R).

Since W n c = W n Q = l , it follows that W c [N, T]. But then

W = [N, T] and this is impossible because N normalizes [N, T] and

Wn n W = 1 for n e N.

Thus C = 1. Now T is a direct sum of faithful and irreducible

RN-modules and by [12] 3.4. 3, we have | T | = q | w | = I w ^ " 1 . This

only has solutions if | w | = 2, q = 4. This verifies (iv).

(v) If W is cyclic, then O(H) = 1.

For T is elementary and so T c F*(H) since s e F*(H) for all

s e C^CK) by assumption and of course K n T c F*(H). By 12. 1, G

has a single class of involutions if W is cyclic. Let s € T . Since

H = Cn(w), W = <w>, M = C-(s) is conjugate to H and so T c F*(M).
CJ G =

Thus O(M) c C (t) because t e F*(M) centralizes

F(O(M)) D CO(M)(F(O(M))). Thus O(M) c H. Similarly O(H) c M.

Now K centralizes O(H), a solvable K-invariant subgroup of H

and so F(O(H)) c OF(C (t)) c O*(M) and

F(O(H)) c c(T) n OF(CM(t)) c O(M) by 13. 5. Thus F(O(M)) c O(M)CH

and so F(O(H)) c F(O(M)). By symmetry, F(O(M)) c F(O(H)) and

H = M if O(H) * 1. But then H = C~(s) for all s e T. This is not

the case because H is a maximal subgroup of G and Np(T) £ H.

(vi) TT(F(Y)) = TT(F(Y) n X).

If TT(F(Y)) * TT(F(Y) n X), then | w | = 2, |Q| = 4 by (iv) and

O(H) = 1 by (v). Thus F*(H) = W x K and K is of type L (r) where

r is odd. Then G is of type JR, a contradiction.

(This is the only time the exact structure of a group of type JR

is used.)

(vii) Put F = R(F(Y) n X). Then N_(R) = F = C^(R).
t r

For R < X, F(Y) n X < X. Thus F is a nilpotent group. But
~~ # ~~

R acts regularly on Q and so the normalizer of R in the full linear

group on Q is, modulo C^(Q), a subgroup of the multiplicative group

of the field GF(q) extended by an automorphism a. If a ± 1, such a
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group is non-nilpotent and so F/C,-,(Q) = R. It follows that F = R x r ( Q ) .
r r

Hence R c Z(F).
Let p €7r(F), P = C2i(Z(Op(F))).

(ix) Ny(P) c Z.

Let y €Ny(P) - X. Let x e Cp(Q), [x, T] c W since T =

Also if z e R # , CT(z) = W. _x

First Cp(Q) n Cp(Q)y = 1. For if a, ay € Cp(Q), then

[a, T] c w n wv = 1 and so a = 1.
Also (P n R) n (p n R)y = 1. For if a, ay e P n R, then

C (a) = W = CT(ay ) and W = Wy, a contradiction.

Since R is cyclic and P is elementary, |P n R | < p. But

P = P n R 0 Cp(Q). It follows that |p | = p2 . If S is any subgroup of

P such that P = (P n R)S = Cp(Q)S then CQ(S)c r ( P ) = 1,

CW(S) c CW(P) = 1.

Thus S acts without fixed points on T. But P n R, C (Q) have

fixed points on T and are moved by y. Therefore they must be inter-

changed. But then y has even order, a contradiction.

We have now shown that Ny(P) c X for P = ft^ZfO (F))) for all

primes p.

Consider now R acting on F(Y) . If F(Y) 3 (F(Y) n X)

choose M such that (F(Y) n X) c M c F(Y) and M is the smallest

such R -invariant group. Then [R , M] c (F(Y) n X) .

Hence M normalizes R (F(Y) n X) = F and so
P P P

M c Ny(P) = X. Thus (F(Y) n X) = F(Y) . Since TT(F(Y) nx) = TT(F(Y)),

we have F(Y) n X = F(Y). Now [R, F(Y)] = [R, F(Y) n X] = 1 and so

R c F(Y). Hence F = F(Y) and P < Y. Thus X = Y. This completes

the proof. /

Lemma 15. 5. Let K be a component of E(H). Then C^K) is

not cyclic.

Proof. Let W = CT(K) = (w). Since K n T is elementary, by

transfer |w | = 2 and NL,(T) is transitive on involutions of T by 12.1.
G e

For K n T has a single class of involutions. If g e G and t& e W,
then C(w) c Hg. But K c CG(w) and since H/E(H) is solvable by 15. 3,
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K = Kg. Then g € G and t e W.

But then t e CT(K) n F*(H) by 15.1 and so t e Z(H). Thus

{H } = M(t) and so by 15. 4, NO(T) c H. But now transfer gives a contra-

diction to the simplicity of G. This completes the proof. /

Lemma 15. 6. Assume E(H) ± 1. Let K be a component of

E(H). Then

(a) C G ( K ) C H .

(b) If K c M e M(s) for some involution s e T, then M = H.

(c) N G ( T ) c H .

(d) K is of type L2(2n).

Proof. If possible choose, H, t, K such that K is of type JR.

The proof proceeds by verifying (a), (b), (c) with this restriction on K.

When (d) is proved, it follows that this restriction on K is vacuous and

the Lemma is completely proved.

Choose an involution k e T n K, M e M(k). By 15. 3, H/E(H)

and M/E(M) are solvable.

If K is of type JR, let N be the product of all such components

of E(H). Otherwise put N = E(H). Note that N is characteristic in

any subgroup S of E(H) which contains it.

Let K * K be a component of N. Then K c C^(k) c M since
1 1 = (jr =

k e K . Because M/E(M) is solvable, K c E(M). Let
C (t) x -

E = K . Then E = E(E) lies in E(M) and by 13. 3 any component

of E, for example K , is either a component of E(M) or is of type

L (q) contained in a component of E(M) of type JR. By choice of H,

if K is of type L (q), no component of E(M) can be of type JR.

Thus K is a component of E(M) and so K <l E(M).

Let N = KKi . . . Kr. Then E^ . . . K^ < E(M) n CQ(K) <

C^CK) (c r (k) c M). It follows that N = KK . . . K <KE(C^(K)) =
(jr = G = 1 r = \JT

E(KC^(K)). Hence E(KCP(K)) c N (N) = H and so E ( K C O ( K ) ) C E ( H ) .
G G = G G =

Now N char E(KCO(K)) and so NO(E(KC^(K))) c N (N) = H. Therefore
G G G = G

C J K ) C H and (a) holds.G =
(b) If K c M e M(s), then K c E(M) and as above, K is a

component of E(M). Thus by (a) we have C_(K) c M. Therefore
G =
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E(M)CH and so E(M)CE(H). But also E(H) c M. Hence E(H) = E(M)

and H = M.

(c) Let U = CT(K). By (b), M(s) = {H} for all involutions

s e U. Then by 15. 4, NG(T) c H and by 15. 5, U is non-cyclic.

(d) Let E be the product of all those components of E(H) not

of type L (2n). We show that E = 1 and then (a), (b), (c), (d) hold

without restriction. Assume E =£ 1.

Since U is non-cyclic and C^(u) c H for all u e U , using
# =

{H} = M(U) for all u €U , every T => U invariant 2'-subgroup D of

G lies in H. Also D ^ E for all T-invariant subgroups D of G such

that E(D) = D and no component of D is of type L (2n) by 13. 6.

Remember T normalizes each component of D.

Let M e M(s), M * H, s £ T. Solvability of M/E(M) implies

that M = O(M)E(M)NM(T). For TO(M)E(M) < M, since M is an A*-

group, and then the Frattini argument applies. Since N (T) c H,

O(M) c H, E(M) £ H. Let L be a component of E(M) not contained in

H. Let V = CT(L).

By 15. 5 applied to M, V is non-cyclic.

If CG(v) C M for all v e V , then E which is V-invariant,

would lie in E(M). Also any component of E(M) not of type L (2 ) is

T 2 U invariant. Thus every component of E(M) not of type L (2n)

lies in H. Conversely every component of E(H) not of type L (2n) lies

in M. Thus E is the product of all components of E(H) and also

E(M) not of type L (2n). Thus H = M, a contradiction. Thus there

exists v e V such that Cp(v) £ M, where v is an involution.

Let R € M(v). Then R # M and of course L c R. Every com-

ponent of E(R) is T-invariant and every component of E(R) of type JR

lies in H by 13. 6. Thus every component of E(R) of type JR lies in
C-D(S)

E(H) and so lies in E. By 14. 3 applied to L K c E ( R ) , where
C (s) CR(s)

clearly L is semi-simple, since L c E(M), we see that L

is a component of E(R) since otherwise L is of type L (q) and lies in

a component of E(R) of type JR. Since L £ H, this last possibility

does not arise.

But now if K is not of type JR, our restriction on K, t, H is
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vacuous and so (a), (b), (c) hold all the time. Apply (b) to M, L in place

of H, K and get M = R, a contradiction. Therefore K is of type JR

and so [T : U] = 8. But U n V = 1 for if x e U n V, CG(x) c H and

CG(x) ^ L ^ H . Thus | v | < 8.

But | V| = [T : T n L]. Thus E(M) 3 L has at most two com-

ponents and E(R) D L has at most two components. But then L < M, R,

a contradiction. /

Lemma 15. 7. H is solvable.

Proof. If E(H) * 1, let K be a component of E(H), U = CT(K).

By 15. 6, N-(T) c H and M(s) = {H} for every involution s e U. Also
G =

by 15. 5, U is non-cyclic. Hence any U-invariant odd order subgroup

of G is contained in H.

Let M e M(s), M ± H, s e T. Since M/E(M) is a solvable A*-
group, M = O(M)E(M)N (T). Thus E(M) <fc H.

M —
Let L be a component of E(M) not contained in H and let

V = C (L). By 15. 4, NQ(T) c M and M(v) = {M } for all v e V#.

Also U n V = 1 because if x is an involution in U n V,

L c CG(x) c H.

(i) We may assume that L < M.

If neither K < H nor L < M, then both E(H) and E(M) contain

at least two other components isomorphic to K, L respectively. Then

U | > | T n K | = [T : U], | V | > | T n L | = [T : V] and then U n V * 1.

Thus we have (i).

Since K is of type L (2 ), K has a cyclic subgroup R which is
2 #

inverted by some involution in K and which acts regularly on T n K .

Then U = C (R) and R c N (T) c M. Thus R normalizes L, L n T

and C (L). Moreover R acts irreducibly on [R, T] = T n K and so

V n [R, T] or V n [ft, T] = V.

(ii) U = T n L and RL = R x L.

For if V n [R, T] = 1 then [V, R] = 1 because R centralizes

T modulo [R, T]. But V n C (R) = V n U = 1. Thus V => [R, T] and

if V => [ft, T], then Cy(R) * 1 and C (R) c U n V.
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Thus V = [R, T]. It follows that R centralizes L n T. But

T = V © (L n T). Since C (R) = U ^ L n T and U n V = 1, we have

U = L n T.

Moreover R normalizes L, of type L (2n) and centralizes a

Sylow 2-subgroup L n T of L. Thus R cannot induce field automor-

phisms on L and must induce inner automorphisms on L. Since

CT (L n T) = L n T, we have [R, L] = 1 and RL = R x L.

(iii) U is a Sylow 2-subgroup of C^(R).
G

For let U D U be a Sylow 2-subgroup of C (R). Then
l — ^ V.G

U c C (u) c H for u e U and so U c T n C (R ) for some h e H.

Then Rh c Kh, a component of E(H) of type L (2n) and Rh is a sub-

group of order 2n - 1 acting regularly on T n K . But

T = (T n Kh) x CT(Kh) and CT(Kh) D CT(Rh) => l A Since

|CT(Kh) | = |CT(K)| = | u | , we have |XJX | = | u | , 1^=11 and U is

a Sylow 2-subgroup of C (R).

(iv) U c F*(CR(R)).

Since T n L is elementary by (ii), U is elementary abelian.

By 15. 1, U c F*(H) because M(u) = {H} for all u e U by
15. 6. Thus U c c (R) n F*(H).

= G
Let F*(H) = KKi . . . KrF(H);

CG(R) n F*(H) = RKx . . . KrF(H);

RF(H) C F(CH(R)).

Now K . . . K normalizes F(C (R)), a solvable subgroup of

H. Hence K . . . Kr centralizes F(CR(R)). Since C (R) is an A*-

group, it follows that Kx . . . Kr c F*(CR(R)). Hence

U c F*(H) n r (R) c F*(CW(R)).= G = H
(v) U c F*(C^(R)) and so L c F*(C^(R)).

For O(CG(R)) is a U-invariant subgroup of G. Thus

O(CG(R)) c H. Hence [O(CG(R)), U] c O(CQ(R)) n F * ( C H ( R ) ) C F ( C R ( R ) ) .

Thus [O(CG(R)), U, U] = [O(CG(R)), U] = 1. By 13. 1, UCF*(CG(R)).

Since U is a Sylow 2-subgroup of CG(R) and L c Cp(R), it follows
that LCF*(C r (R) ) . Thus L = E(CnCR)). It follows that= G G
N-,(R) c N^(L) = M. Hence K = < T n K, N^(R) > c M. This contra-
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diets 14. 6(b) because M * H. This completes the proof. /

Lemma 15.8. N^(T) c H.
Ur =

Proof. Since H is solvable and t e F*(H), t €O2(H). If

O(H) = 1, NQ(T) c H clearly. Let p e *, p * 2. Let P be a maximal

T-invariant p-subgroup of G containing O (H).

(i) P c H.

For CG(P n H) c H and so [t, Cp(P n H] c p n O2(H) = 1. Since

[P n H, t] c p n O (H) = 1, 2. 2 implies that P c CQ(t) c H.

(ii) <|/IG(T, p')> c H.

The Transitivity Theorem 4.1 obviously applies here and so

Cr(T) c H acts transitively on the maximal elements of l/lr(T, pT).

Since P c H, <HG(T, pT)> c H.

Now let g e N (T). Since Hg D T, F(Hg) is centralized by T.

Because F(Hg) t e \AQ(T, pT), F(Hg) f C H by (ii). Thus F(Hg) c H.

It follows that [t, F(Hg)] c [t, F(Hg) f] c F(Hg) f n O (H) = 1. Because

[t, F(O(Hg))] = 1, [t, O(Hg)] = 1 and so O(Hg) c H. Since H has

2-length 1, being a solvable A*-group, O(Hg) c O(H). Thus Hg = H

and Nr(T) c H. /

Lemma 15. 9. C^(x) c H for all x e O (H)#. Also O (H)
(jr — 2 2

is non-cyclic.

Proof. O (H) is clearly non-cyclic because,by 15. 8, if O (H)

were cyclic, O (H) c Z(Nr(T)) n T and transfer then contradicts the

simplicity of G.

Let x e O2(H) be an involution, M € M(x). By 15. 8, NQ(T) c M

and so H = O(H)NQ(T) c M. For [x, O(H)] c O2(H) n O(H) = 1 and so

O(H) c r (x) C M . /
= LJ =

Lemma 15.10. M(s) = {H } for all involutions s e T .

Proof. For let M e M(s), s e T. Then M = O(M)N (T). By

15. 9, O(M) c H because O(M) = <CG(x)nO(M) : x e O2(H)#). By 15. 8

NG(T) c H. Thus M = H. /

This contradicts 13. 3 and completes the proof of Theorem A.
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APPENDIX: p-CONSTRAINT AND p-STABILITY

These concepts are rather natural generalizations of aspects of

the theory of p-solvable groups - see [14]. The definition of p-constraint

is taken from a crucial property of p-solvable groups noticed in the

famous Lemma 1. 2. 3 of [14]. The definition of p-stability is taken from

the famous Theorem B of the same paper. The reader should be familiar

with both that paper and also the exposition of these concepts in [12]. A

very little discussion of these topics is included to overcome an error in

the Gorenstein treatment and also an omission - it is important to know

how much induction one has with these concepts.

Definition. Let p be any prime. A group G is said to be p-

constrained if, when P is a Sylow p-subgroup of O t (G), then

CG( P )i°p',P( G )-

Definition. Let p be an odd prime, G a group in which
O (G) * 1. Then G is said to be p-stable when, for any p-subgroup

P
A c G and any A-invariant p-subgroup P c O T (G) such that

O t(G)P < G and [P, A, A] = 1 it follows that'

ACQ(P)/CG(P) c Op(NG(P)/CG(P)).

First, it is easy to see that if P is a Sylow p-subgroup of O t (G)
and C~(P) is p-solvable, then G is p-constrained. For by Lemma
°- 3> CG/O t(G)(p) = CQ(P)O r(G)/O .(G) and there is no loss of gener-
ality in assuming O f(G) = 1. Thus CP(P) < G and we can find

p (J =

K < G, K 3 P such that K c PC (P) and K/P is a chief factor of

G/P, if CQ(P) (j: P. Since P = O T (G), K/P is a p'-group and then

a q-group for some prime q * p. Since K c PC~(P), K = PC^(P). Let

Q be a Sylow q-subgroup of K contained in CK(P). Then

K = PQ = P x Q and so Q c o T(K) c O f(G) = 1. This shows that G

is p-constrained if Cr(P) is p-solvable where O T(G)P = O T (G), P

a p-group.

Notice however that the property of p-constraint does not neces-

sarily pass to either subgroups or to factor groups. In order to see this
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consider A x c c A . Clearly A x c is not 3-constrained. We
5 3 = 8 5 3

can make a group 78(A x c ) by extending an elementary abelian group

of order 7 by A x c with the natural action. Now let this new

group act faithfully on any elementary abelian 3-group. The group
k 8G = 3 7 (A x c ) so constructed is clearly 3-constrained since the

5 3 k
elementary abelian group 3 = O (G) is self centralizing. Since
A x c is both a subgroup and a factor group of G, we see that p-

constraint does not induct in either direction.

The following result shows that some induction to both factor

groups and subgroups is possible under certain circumstances.

Lemma 1. (a) A group G is p-constrained if and only if

G/O t(G) is p-constrained.

(b) If G is p-constrained, then NG(P) and CG(P) are p-
constrained for every p-subgroup P of G.

Proof, (a) This follows immediately from 0. 3.
(b) Using 0. 3 and (a) we may assume that O T(G) = 1. The

result follows from 12. 5.

We turn now to p-stability. It is worth stating the celebrated
Theorem B here so that the original genesis of p-stability can be dis-
cussed.

Theorem B (P. Hall and G. Higman). Let G be a p- solvable

group of linear transformations in which O (G) = 1, acting on a vector
space V over a field F of characteristic p. Let x be an element of
order p . Then the minimal polynomial of x on V is_ (X - 1) where

(i) r = pn or n

(ii) there exists an integer n < n such that p ° - 1 is a
power of a prime q for which the Sylow q-subgroups of G are non-
abelian. In this case, if n is the least such integer, then

n-n n
P °(P ° - D < r < p n .

Of course, it is no surprise that the minimal polynomial is of the

form (X - l ) r where r < pn. Clearly the minimum polynomial divides

81

 
 

 



n n
Xp - 1 = (X - l ) p . The interesting part of this Theorem is the lower

bound. For our purposes we will enquire when the constant r can be

2, i. e., when will x have quadratic minimum polynomial? Clearly it

always will if pn = 2 and this is the reason for excluding the prime

p = 2 from the definition of p-stability.

Thus r = 2 occurs only when p °(p ° - 1) = 2 and this holds

only when n = n = 1, p = 3. A Sylow 2-subgroup of G will be non-

abelian and 3 / | G | . A careful reading of the proof of Theorem B shows

that r > 2 unless SL(2, 3) is involved in G.

To get to the hypothesis of Theorem B in an abstract group G,

suppose that P is a p-subgroup of G and that O (N_,(P)/C~(P))=1. Let
P G CJ

A be an abelian p-subgroup of N (P) and let V = P/*(P). Then
[P, A, A] = 1. If v e V, A e A, [v, a] = -v + v = v" ,

Since [P, A, A] = 1, (-1 + a)2 is the zero endomorphism of V
and so a acts on V with at worst quadratic minimum polynomial. If
for example SL(2, 3) is not involved in G, we know that a

must act trivially on V. It will follow that A c p and so P contains

every abelian subgroup normal in a Sylow p-subgroup of N(P). Further

information can be found in [12],

Once again, p-stability does not go over to proper sections.

For a careful reading of the proof of 3. 8. 3 of Gorenstein [12] shows

that, when x and y are conjugate p-elements in a group X such that

(x, y) is not a p-subgroup while x acts on a G-vector space of character-

istic p with quadratic minimum polynomial, it follows that (x, y)

involves SL(2, p).

Now consider, A , the alternating group of degree 8. Let V be
8 Q

an elementary abelian 3-group of order 3 and G the split extension

of V by A with the natural action of A on V. Given any 3-element

x of A there is always a conjugate y of x in A such that (x, y)=A .
8 8 4

Hence (x, y) does not involve SL(2, 3) and so x cannot act on V with

quadratic minimum polynomial. Thus G is 3-stable.

Since however G contains a section isomorphic to Qd(3), a split
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extension of a group of type (3, 3) by SL(2, 3) and a classical non-

3-stable group, we have exhibited a 3-stable group with a non-3-stable

proper section.

In view of this, the following Lemma is useful.

Lemma 2. A group G in which O (G) * 1 is p-stable if and only

if G/O t(G) is p-stable.p

Proof. If G is p-stable, write G = G/O T(G), etc. Suppose that
S c N—(p)=G is such that [P, 5 , A] = 1 where A, P are p-subgroups
of G. Let K = O t(G). Now A normalizes PK and since the number
of Sylow p-subgroups of PK is prime to p, there exists a k e K such
that A normalizes P.

Also [P, Ak, Ak] c K. Hence

[P, Ak, Ak] c P n K = 1.

Therefore since G is p-stable, AkC.(P)/Cn(P)co (Nr,(P)/Cr,(P)).G G = p G G
By 0. 3, C^(P) = CG(P)K/K, and so

G/C^(P) = G/CG(P)K = NG(P)CG (P)K/CG(P)

= NG(P)/(NG(P) n CG(P)K) = NG(P)/CG(P).

Since AkCG(P)/CG(P)cOp(NG(P)/CG(P)) =Op(G/CG(P)) and
A^ = T C^(P) = COP), we have that G is p-stable.

Cjr CJ

Conversely suppose that G = G/O t(G) is p-stable. Let P be a
p-subgroup of G such that O ,(G)P c G and suppose that A c N (p)

P = = Lr

is a p-subgroup such that [P, A, A] = 1. Since [P, 5 , 5] = 1, we
have that

Now

and

SCG(P)/CG(P) cOp(G/CG(P)).

CG(P) = CG(P)Opf(G)/OpT(G)
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NQ(P).CG(P).Op,(G)/CG(P).Opt(G) = G/CG(P)Op,(G)

s NG(P)/(NG(P) n (CG(PX> ,(G)) = NG(P)/CG(P).

Thus under the above isomorphism

ACG(P)/CG(P) C0p(NG(P)/CG(P))

and G is p-stable. Lemma 2 is completely proved.
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