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Introduction

The following material is selected from a course of lectures given
at the University of Florida in Gainesville, Florida during 1971/72. The
reader is expected to have read both Gorensteins' Finite Groups and much
of Huppert's Endliche Gruppen I. In particular he must be familiar with

the concepts of p-constraint and p-stability in order to begin, although
there is a short discussion of these concepts in an appendix here.

The topics covered are such that I feel rather diffident about
publishing these notes at all. The title should perhaps be changed to
something like 'Lectures on some results of Bender on finite groups'.

No less than three of his major results are studied here and of course

the classification of A*-groups depends on his 'strongly embedded sub-
group’ theorem - which is not studied here at all. I feel that the theorems
and techniques of the papers 'On the uniqueness theorem' and 'On groups
with abelian Sylow 2-subgroups' are too important for finite groups and
much too original to remain, as at present, accessible only to a very few
specialists. I think that I understand the motivation for the abbreviation
of the published versions of these two results, However, though it is
clear that a proof becomes considerably more readable when a two or
three page induction can be replaced by the words 'By induction we have',
these details must sometime be filled in. And unfortunately, I think

Dr. Bender has sometimes disguised the deepest and most elegant argu-
ments by this very brevity. I hope that these notes will serve to make
more of the group theoretical public aware of these incredibly rich results.

I must thank here the audience at the University of Florida -
Mark Hale, Karl Keppler, Ray Shepherd and Ernie Shult. The contribu-
tion of Ernie Shult in particular cannot be minimized. Without him, we
would all have floundered very soon.

December, 1973 Terry Gagen
Sydney, Australia
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Notations

The notation used here is more or less standard., The reader
should refer to [12] or [15] when in doubt.

SCIL(P)
SC (p)

VIG(A, 7)

ME(A, m)
r(P)

0_ _(G)

0"(G)

F(Q)
®(G)

The set of all self centralizing normal subgroups of P.
The set of all self centralizing normal subgroups of a
Sylow p-subgroup.

The set of all A-invariant 7-subgroups of G where 7 is a
set of primes.

The maximal elements of V]G(A, m),

The number of generators of an elementary abelian subgroup
of P of maximal order (amongst all elementary abelian
subgroups of P).

(A . b € B).

A Sylow p-subgroup of G.

The maximal normal 7-subgroup of G, 7 a set of primes,
OW(G mod OG(G)).

The smallest normal subgroup of G such that G/OW(G) is
a 7-group.

The Fitting subgroup of G.

The Frattini subgroup of G.

The following two results are absolutely basic.

1. The Three Subgroups IL.emma
If A,B, CCG NJG and [A, B, C]gN, B, C, A]gN, then
[C, A, B] C N

2, If P is ap-group of class at most 2, then for all n € Z and for
all x, y €P,

viii

(xy)n - xnyn[y, x]n(n- 1)/2.



Elementary results

Definition. A group of automorphisms of a group P stabilizes
a chain P=P02P12..._D_Pn=1if[A,Pi]gP 0,...,n-1,
Here [a, x]=x 3 for x € P, a €A,

i+17 1T

Theorem 0.1. If a group of automorphisms A of a 7-group P

stabilizes a chain P 2 P1 2...2 Pn =1, then A is a 7-group.

Proof. Suppose a € A is a 7-automorphism of P. Clearly, by
induction we may assume that [a, Pl] =1, Thenif x €P, x* = Xy

where y € P_, since [a, P]CP.

2 |a
It follows that x* =xy2, ceey X =xy|"1| =X,

Since y is a m-element while a is a 7'-element, we have that
y=1 and [a, P]=1. Thus a=1 and A is a 7-group. /

Corollary 0.2, If A is a 7'-group of automorphisms of a 7~group
P such that [P, A, A]=1, then [P, A]=1 andso A=1

Proof. A stabilizes the chain P 2 [P, A]2 [P, A, A]=1. /

Lemma 0.3. Let A be a n'-group of automorphisms of a 7-

group P. Let Q be an A-invariant normal subgroup of P. Then
Cp QA) = CpAQR.

Proof. Clearly CP(A)Q/Q < CP/Q(A).

Suppose now that xQ is a coset of Q in P which is fixed by A,
Let QA act as a group of permutations on xQ where A acts in the
obvious way and Q acts by multiplication on the right. Then QA acts
transitively on xQ since Q does. Let A1 be the stabilizer of a point.
Then |A | = |Qal/Ixq| = [Al.

By the Schur Zassenhaus-Feit-Thompson Theorem A1 is con-



jugate to A. Thus there exists y € xQ such that y € CP(A). /J

Remark. Note that in every application of 0. 3, 0. 4 in these
notes, it will be known a priori that at least one of A or P is solvable,
Hence the Feit-Thompson Theorem will not be required in the applications
of 0.3, 0.4 here,

Corollary 0.4. Let P be a n-group, A a 7'-group of automor-
phisms of P. Then P =[P, A]CP(A).

Proof. [P, A]S P andis A-invariant. Also A centralizes
P/[P, A). /

Corollary 0.5. If A is a 7'-group of automorphisms of an
abelian 7-group P, then P = Cp (A) ® [P, A]

Proof. We show that CP(A) n [P, A] = 0, writing P additively.

Let 6 be the endomorphism of P definedby 6 = 1 2 a, Clearly
) ]_T aeA
b6 =6b=206 forall beA, Thus 6" =86,

Since PO nker 6 =0, P = PO ® ker 6.
1
Now if x € C_(A), then x6 = 2 xa=x andso C,(A) C Pé.
o), ar o) €
Finally if [x, a] € [P, A], then (-x + xa)0 = -x6 + x6 =0 and so
[x, a] e ker 6. Thus CP(A) n [P, A]=0. The result follows from 0. 4. /

Lemma 0.6, (Thompson) Any p-group P contains a character-

istic subgroup C such that
(a) ¢ C <2 and C/Z(C) is elementary;
(b [P, €] S Z(0);
(¢) Cp(C) = 2Z(C);

(d) Any automorphism a #1 of order prime to p acts non-

trivially on C.

Proof. We first show that (c) and C char P together ensure (d).
For suppose that [a, C] =1, where a is our given p'-automorphism,
Then

[a, C, P]=1.



Also
[C, P, a] c[c, a]=1.
Thus

[P, a, C]=1
[P, a] gCP(C) = Z(C) by (c).

Hence

[P, a, a]=1. By 0.2, [P, a]=1.

To show the existence of C we proceed as follows, First if any
subgroup A € SQJU(P) is characteristic in P, then take A = C, Clearly
(a), (b), (c) hold. Hence we may suppose that no maximal abelian sub-
group of P is characteristic, Let D be a maximal characteristic
abelian subgroup of P. Clearly CP(D) 2D and CP(D) char P. Let

C/D =9, (Z(P/D)) 1 Cp(D)/D.

Clearly C © D, and C is a characteristic subgroup of P. Since
D¢ Z(C) and Z(C) is an abelian characteristic subgroup of P, maxi-
mality of D ensures that D = Z(C). Clearly C is a characteristic
subgroup of P.

(a) Since C/D is elementary abelian, first C/Z(C) is elementary
and then [C, C] cb¢ Z(C). Hence cl C § 2.

(b) Since C/D C Z(P/D), [P, C] S D = Z(C).

(c) Suppose that Q = CP(C) iC. Since QN C = Z(C) = D we have
QD CP/H and QD NC/D =1, Of course Q < CP(C) = CP(D). If
Q #D, then Q/D intersects Ql (ZP /D) n CP(D)/D non-trivially.

This contradiction completes the proof. /
1. BAER'S THEOREM

The Theorem 1. 1 is required in the study of p-stable groups and
a proof due to Suzuki is given in [12]. Of course, it follows immedi-
ately from the result of Baer [15] p. 298, this proof being given below as
the first proof. Two other proofs of this result are given, both of which

are interesting and brief.



Theorem 1.1 (R. Baer). Let K be a conjugacy class of p-

elements in a finite group G. If (x, y) is ap-groupfor all x, y €K,
then K< OP(G).

First Proof. Since (x, y) is a p-group for all x, y €K, for
all g €G, [x, g]= x-lxg and x are elements of the finite p-group

£).

x, x Hence

[g, %, X, ..., x| =1 after a while.

Thus x is a right Engel element and by Theorem III, 6, 15 [15],
x € F(G). Hence K C OP(G). 7/

Second Proof (J. H. Walters). Let G be a minimal counter
example to the Theorem, Let M1’ Mz’ ceus Mt be all the maximal
subgroups of G containing a fixed element x € K,

Clearly Op (G) =1 since G is a minimal counter example.

If t=1, thenforall y €K, (x, y) S M, since (x, y) isa
p-subgroup of G and so is certainly a proper subgroup of G containing
X. Thus KC M. Let L=(K). Then LCM CG and KC Op(L)
by induction. Since L J G, we have a contradiction.

Thus we have t> 1. Among all i, j with i #j choose
D =M, NM, such that lDIp is maximal. Let P be a Sylow p-subgroup
of D containing x.

We show that there is no loss of generality in assuming that P is
a Sylow p-subgroup of both Mi and M].. For suppose that P C Pi’ a
Sylow p-subgroup of Mi' Then NG(P) n Pi D P. Let Mk be a maximal
subgroup of G containing NG(P) C G. Then M, 0 Mi 2 NG(P) n Pi oP
and so k=1 by the choice of i, j. Also NG(P) < Mi andso P isa
Sylow p-subgroup of M].. Now choose n € NG(P) n Pi - P. Then clearly
ng¢M, andso M. #M.. Otherwise M, ﬁ G and by induction
x €KNM; COpM) COpG) =1, a corjltradiction. Now M;‘ oP"=p

contains x and so M;‘: M, for some [. Take M. N M, as our re-

l j l
quired intersection, Note that P is a Sylow p-subgroup of both M]. and

M,.
l
We derive a contradiction easily now. By induction



KNM, ¢ Op(Mi) CPC Mj.

Hence K n Mi CKn Mj'

Similarly KnM, CKn Mi'

Thus Mj = NG((K n Mj)) = NG((K n Mi)) =M,, afinal contra-
diction. /

Third Proof (J. Alperin and R. Lyons). [1] Againlet G be
a minimal counter example. Let P be a Sylow p-subgroup of G. If
(K) is a p-subgroup, then KC Op(G) since KJG. Thus (K) is nota
p-subgroup and so Kd£‘ P. Let y ¢eK-P andlet Q be a Sylow p-sub-
group of G containing y. Then of course KNP # K NQ.

Among all Sylow p-subgroups P, Q of G suchthat KnP 2KNQ
choose P, Q so that IK npePnN QI is maximal, Since P* = Q for some
x€G, (KNP =KnQ andso KNP £Q, KnQEP. Let D=(RNPQ).
Suppose D = P0 C P1 Cc... C Pn= P where [Pi+l : Pi] =p.

Clearly K nP { D.

Suppose i is the smallest positive integer such that
Kn Pi i KnD. Let xe(n Pi)-D. Since Pi-l < Pi’ X normalizes
P, ; and so x normalizes (K n Pi_l) =D. Choose y € (K N Q)-P
similarly such that y normalizes D.

Then (x, y) is a p-group by hypothesis and so (x, y, D) isa
p-group also, Let R be a Sylow p-subgroup of G containing (x, y)D.

Then (x, D) CR NP implies that R =P while (y, D) CRNQ
implies that R = Q. This is a contradiction. /

2. A THEOREM OF BLACKBURN

This theorem duplicates some of the results of [12] - but its proof
is so beautiful that it should be included here. The following lemma is of

crucial importance for many of the results to come,

Lemma 2.1 (J. Thompson), Let a be a p'-automorphism of a

p-group G. Suppose that X is a p-group of automorphisms of G and
[a, X]=[a, CG(X)] =1, Then a=1,

Proof. Let NC G be X-invariant such that [a, N] #1, but
[a, K] =1 for all X-invarjant proper subgroups K of N. Then apply the



Three Subgroups Lemma, We have

[N, X, a]=1 because [N, X]CN
and is X invariant.

[X, a, N]= 1.

Thus [a, N, X]=1, [N, a] S CG(X), [N, a, a]=1. By®O.2,
[N, a]=1. This completes the proof. /

Lemma 2.2, Let a be a 7'-automorphism of a 7-group G and
suppose X <1 < G is such that [a, X] = [a, CG(X)] =1, Then a=1,

Proof. Let X< X1 <...dq Xn= G and choose i such that
[, X;,,]#1, [a, X)) =1 Let N=N,(X,. Since X;,;CN,
fa, N]# 1. But

1

Hence [N, a, Xi] =1, [N, a]C CG(Xi) < CG(X). Thus [N, a, a]=1.
Lemma 0. 2 implies that [N, a]=1. /

Lemma 2, 3 (N. Blackburn) [6]. Let a be a p'-automorphism of

ap-group P. Let E be an abelian subgroup of P, maximal of exponent

pn, where n> 2 if P is a non-abelian 2-group and no restriction is

placed on n otherwise. If [a, E]=1, then a =1,

Proof. Let P be a minimal counter example.

If C= CP(E) C P, then [a, C]=1 by induction. By 2.2, a=1,
Thus E C Z(P).

Also, since E # P trivially, ®(P)E C P. Thus a centralizes
&(P) by induction. If C(®(P)) C P, again we have
fa, ®(P)] = [a, CP(<I>(P))] =1 since E C C(®(P)). By 2.2, a=1 again.
Thus P has class at most 2 and $(P) C Z(P).

Choose x € P and consider [x, a]pn.

n n n n n, n
[x, a]p =& P =xP P [xa, x-l]p P -1)/2.



If P is abelian then of course [xa, x-l] = 1. On the other hand,
if P is non-abelian, then
n, n n-1, n
a _-1 -1)/2 a - -1)/2
& P @ -D2_ A P -1/
since if p=2, n> 2. But x P d(P) < Z(P) for all x € P, Thus in
every case we have
n n n n _n
- a - a
[, a]p =xP (x)p =xP (xp).
n n
Since [a, #(P)] =1 and P € &(P), we see that [%, alP =1
By the maximality of E, [x, a] €E, for all x € P. Thus [P, a]CE
and [P, a, a]=1. By0.2, [P, a]=1 andso a=1,/

Theorem 2.4. Let P be ap-group. If a is ap'-automorphism

of P which centralizes Ql(P) then a=1 unless P is a non-abelian

2-group. If [a, Qz(P)] =1, then a =1 without restriction. /

3. A THEOREM OF BENDER

Theorem 3.1 [2]. Let G be a p-constrained group. If p=2

assume that the Sylow 2-subgroups of G have class < 2. Let E be an

abelian p-subgroup of G which contains every p-element of its centralizer.

Then every E-invarijant p'-subgroup H of G lies in Op,(G).

Remark 1. If E is a self centralizing normal subgroup of a
Sylow p-subgroup of G, then E contains every p-element of its central-
izer in G, For let E € SCI(P) where P is a Sylow p-subgroup of G.
Suppose that D D E is a Sylow p-subgroup of CG(E). Consider NG(E).
Suppose that Q is a Sylow p-subgroup of NG(E) containing D. Since
P C N, (E), there exists n € N4(E) such that Q" =P. Then
D"cPn C4(E) =E. Hence D=E is aSylow p-subgroup of C,(E). By
Burnside's Theorem, CG(E) =E X Op,(CG(E)).

Remark 2. Theorem 3.1 cannot hold without restriction if p = 2,
even if G is solvable, Consider for example G = GL(2, 3), E €G a
fours-group. Then 02,(G) =1, CG(E) = E, but there is a subgroup of



order 3 which is normalized by E. Note that a Sylow 2-subgroup of
GL(2, 3) has class 3.

Proof. Let G be a minimal counter example. The proof pro-
ceeds by a series of steps.

1. Op,(G) =1,

Otherwise, let G = G/Op,(G). Since Ca(ﬁ) =Q(E), by 0. 3, we
have H c Op,(G) =1 Thus HC Op,(G).

Let R = Op(G) and let Q # 1 be a minimal E-invariant p'-sub-
group of G. If RQE C G, then Q gOp,(RQE) by induction. Hence
R, Q] c Op,(RQE) NR =1, Since CG(R) C R by p-constraint we have

2. G = RQE.

Let S be a QE-invariant subgroup of G minimal with respect to
[Q, S] #1. Then S is a special p-group. The argument which verifies
this is standard., See for example [12].

If S is abelian, then S = CS(Q) ®[Q, S] by 0.5. But [Q, S] is
an E-invariant p-subgroup and so CP(E) n[Q, 8] #1. Thus En|[Q, S]#1
by our hypothesis on E. On the other hand [E n[Q, S], Q1€ QnS=1,
This contradicts CS(Q) n[Q, s]=1 B

If S is non-abelian and p is odd, we use a remarkable idea of
Bender, or perhaps of Baer, First by 2.4, since [Q, S]#1, and S is
minimal, S = Ql (S) has exponent p. Let T be a new group defined as
follows: T = S qua set.

[

Every element x € S has a unique square root x2 € S, slincel P
is odd. Define a binary operation o on T as follows xoy = x? yxZ.

It is routine to check that T is an elementary abelian group. Also
QE acts as a group of automorphisms of T. Since S=T as sets, the
fixed points of both Q and E on T are unchanged. But we have already
reached a contradiction when S is abelian, This same argument can be
applied to TQE.

If p=2 and S is non-abelian, first [E, S] C Z(S) since SE has
class f__ 2. Thus

[S, E, Q1< [z(8), Q] =1
[Q s, E]C[S, E] < Z(6).



Hence

[E, Q, S]CZ().

It [E, Q] #1, then [E, Q] CQ stabilizes the chain S Z(S) 2 1.
Hence [E, Q] C CG(S) by 0.1. Since [E, Q] is an E-invariant subgroup
of Q, minimality of Q ensures that Q = [E, Q] < CG(S). This is a
contradiction.

Thus we may assume that [E, Q] = 1. Since S, E]CS is
then Q-invariant, minimality of S ensures that [S, E, Q] = 1. Also
[E, Q, S]=1. Itfollows that [Q, S, E] =[S, E] = 1. Our assumptions
on E nowgive SCE and [S, QS QnS=1 This contradiction
completes the proof. /

Lemma 3.2, Suppose P is a p-subgroup of a p-constrained
oup G. Then O_,(N.(P)) € O_,(G).
group n O,,(N(P)) CO,,(G)

Proof, Since G is p-constrained, it follows from 0. 3 that

G/Op,(G) is p-constrained. Let G = G/Op,(G) etc. By induction we
have Op,(Na@)) c op.(G) = 1. But clearly Op,(NG@)) = op,(c-G(‘ﬁ)) =

—‘(C’—(Fﬁop. G by 0.3. Thus op,(NG(ﬁ)) =op“(_ﬁ, Cg®P). Since

Op,(NG(P)) < CG(P), it follows that Op,(NG(P)) c Op,(G) in this case.
Hence we may assume that Op,(G) =1 Let M= Op(G), Q= Op,(NG(P)).
Since [Q, P]=1 and [Q, CM(P)] CMNQ=1 wehave [Q, M]=1 by
2.1. Hence Q=1 because CG(M) €M by p-constraint.

Remark, The reader should refer to Lemma 12.5,12, 6 due to
Bender for a far reaching generalization of this result.

Lemma 3.3, If G is a p-solvable group of odd order and P is
a Sylow p-subgroup of G such that r(P) < 2, then G has p-length 1.

Proof, Let G be a minimal counter example. Clearly
Op,(G) =1. Let R= Op(G). Since G is p-constrained, CG(R) CR.
Let C be a Thompson critical subgroup of R andlet D = Ql (C). Since
IG| is odd and C has a class § 2, D has exponent p.

Since r(P)< 2, r(D) < 2. ¥ |Z(D)| > p’, then D= Z(D) andif



|Z(D)| = p then any subgroup of type (p, p) containing Z(D) has
centralizer of index < p. It follows that D] < p’. Also ID| = p3
only if D is non-abelian of exponent p. Let 5 =D/®(D). Then C G(ﬁ)
is still a normal p-subgroup of G and so CG(ﬁ) CR. But
G/CG(ﬁ) C GL(2, p). But any odd order subgroup of GL(2, p) has a
normal Sylow p-subgroup.

Thus G = Op,p'(G mod CG(ﬁ)) andso G = Op,p'(G)’ /7

Lemma 3.4, If G is a solvable group of odd order and P is a

Sylow p-subgroup of G such that P' is cyclic, then G has p-length 1,

Proof. Let G be a minimal counter example. First Op,(G) =1
clearly. Let R =Op(G). Then CG(R) CR since G is solvable.

If ®R) +1, let G=G/B(R). Since P' is cyclic, G has p-length
1. Let Q®(R) =Op,(G mod ®(R)) where Q is a p'-group. Then
[Q, R] c ®(R) and so Q centralizes R modulo #(R). Thus [Q, R]=1.
Hence Op,(G mod ®(R)) =1 and G has p-length 1.

Thus we have that R is an elementary abelian p-group. Let
x € P, Then [x, R] g P'n R, acyclic subgroup of order p. Thus

[x, R]C Z(P) and [R, x, x]=1.

Hence x acts on R with quadratic minimum polynomial. For a
discussion of this see the Appendix p. 80. By the famous Theorem B of
Hall and Higman [x, R]=1. Thus P =R and the Lemma is proved. /

4, THE TRANSITIVITY THEOREM

Included here is a proof of a rather unsatisfactory form of the
Thompson Transitivity Theorem. This is proved completely in [12]. The
proof given here is shorter but the Theorem is less general., More
precisely, for the case of odd primes, the Theorem is more general;
but for p = 2 it deals only with groups, whose Sylow 2-subgroups are of
class at most 2. I do not know of any slick way to prove the general
result. The final difficulty arises from the fact that a subgroup can be
self centralizing and normal in one Sylow p-subgroup of a group but con-

tained in another Sylow p-subgroup non-normally., The Theorem 3.1 is

10



used to overcome this difficulty by replacing the elements of SCJ by
a rather larger class of groups. By this means we lose the case p = 2,
class > 3. No matter: the result as stated suffices for the results in
these n_c->tes.

Before stating the Main Theorem, we prove a couple of auxiliary

results.

Lemma 4,1, If P is ap-subgroup of G such that NG(P) is

p-constrained, then C G(P) is also p-constrained.

Proof. First Op,(NG(P)) =0,,(C4(P)), clearly. Using 0.3,
we may assume that Op,(NG(P)) =1, Let N= NG(P), C= CG(P),
Q= Op(C), R = Op(N). Since Q char C ;1 N, QSR NC. Since
RﬂCﬁC, RNCCcQ andso Q=R NC.

Let x € CC(Q) be a p'-element, Then [x, R] SRNC=Q Thus
x stabilizes the chain R 2 Q 2 1 andsoby 0.1, X € CN(R) < R since N
is p-constrained. It follows that C C(Q) is a p-subgroup, normal in C.
Thus CC(R) = Q and C is p-constrained. /

Lemma 4.2, Suppose that A is an elementary abelian p-group

such that r(A) =3, If P, Q are A-invariant p'-groups, there exists
a € A such that CP(a) #1, CQ(a) #1,

Proof. Let V be a subgroup of A of type (p, p). Since
P= (CP(V) (V€ V#>, there exists v € V# such that CP(V) #1. Let
W C A suchthat W is of type (p, p) and W n(v) = 1. There exists
w € W such that CP(w) n CP(V) # 1, since CP(V) is W-invariant, Then
(v, w) is of type (p, p) and acts on Q. Thus there exists an element
a e(v, w># such that CQ(a) #1, Since CP(a) 2 CP(W) n CP(V) #1, we
are done. /

Theorem 4, 3, (Transitivity Theorem) [8]. Let G be a group

in which the normalizer of every non-trivial p-subgroup is p-constrainted,

If p=2, assume that a Sylow p-subgroup of G has class < 2. Let E

be an abelian p-subgroup of G such that r(E) z 3 and such that E con-

tains every p-element of C =C G(E). Then Op,(C) acts transitively on
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the elements of V1*(E, q) where q is a prime, q #p.

Proof. Let 81, 82, eees St be the Op,(C) orbits of elements of
Vla(E, q) and suppose that t> 1. Then clearly VIE(E, q) # {1},

Consider now R = Si n Sj for subgroups Si € Si, Sj € Sj, where
i #j and suppose that R is chosen of maximal order, For convenience,
write i =1, j=2, Of course, RC S1’ RC Sz'

Now N=N_(R)2E. Consider N =NR)/R. Let T;=NN§,OR.
Then Ti = Ti/R’ i=1, 2 are }i-invariant, non-trivial, and so by
Lemma 4, 2, there exists e ¢ E° such that CT‘(e) #1,i=1, 2, By

i
0. 3, C—T— (e) = CT (e) and so (CG(e) n Ti)R D R. By hypothesis and
i i

Lemma 4,1, CG(e) =H is p-constrained, and CG(e) 2 E.

Let Pi = Ti N H, Then PiR D R. Remember Pi E-_ NG(R). Now
Pi is E-invariant and by 3.1, Pi c Op,(H).

Let L =R(N n H). Since Pi _E_ Op'(H) nN g Op,(N n H), Pi_E_Op,(L)
because RJ L and R is ap'-group. Thus RP, gOp,(L), i=1, 2,

Let Qi 2 PiR be an E-invariant Sylow q-subgroup of O_,(L),
i =1, 2. There exists x ¢ CG(E) n Op,(L) such that QT = Q2 by [12],
6.2.2. Since {x) is an E-invariant p'-subgroup of NG(E), which is p-
constrained, 3,1 ensures that x € Op,(NG(E)), X € Op,(CG(E)).

Let U €UL(E, q), U2Q,. Then UnS 2Q nS 2P ROR.
By choice of R, U € 81.

But U¥n 5, 2 Q’l‘ ns,=Q,nS, 2P ROR. Now since x€C(E),
U* is a maximal element of W(E, q) clearly. By the choice of R,

U¥eS andso UeS. Thus 8§ =3§_.
2 2 1 2

5. THE UNIQUENESS THEOREM

This and the next two sections are devoted to a proof, due to

Bender, of the Uniqueness Theorem 5.1 [3].

Theorem 5.1. Let G be a minimal simple group of odd order.

Let U be an elementary abelian p-subgroup of G of order p3. Then

there is one and only one maximal subgroup of G containing U,
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Remark. This major theorem shortens much of the group
theoretic Chapter IV of the Odd Order paper [8] of Feit and Thompson.
It should be pointed out that if a group G of odd order contains no ele-
mentary abelian p-subgroup of order p3 for any prime p, then G is
not simple. In fact, such a group has an ordered Sylow tower, see [8].

If there is one and only one maximal subgroup M containing a

subgroup V C G, then we call M a uniqueness subgroup.

Theorem 5.2, Let G be afinite group, H a maximal local sub-
group of G, F=F(H). Let X= CH(F), 7 = 7(F). Assume that
|11| z 2, Choose M a subgroup of F satisfying CF(M) CM andlet R
be a solvable subgroup of G normalized by MX. Then for any prime

qen, VIR(M, q) has only one maximal element and this is a Sylow g-
subgroup of Oﬂ,(R).

Proof. Since Oﬂ,(R) < Oﬂ,(RM) < Oﬂ,(R), we may replace R by
RM and assume that M C R. The proof is divided into a series of steps.

(i) If Y isa ﬂ'—-subgroup of R normalized by M, then
YNH=1.

(The reader should consult Theorem 12, 4(a) for an appropriate
generalization of this step. )

First Y N H centralizes M since [Y nH, M] c FH) NnY =1,
But CF(M)=CM. Now consider (YNH)F. lLet pern. If xe(Y nH)F
is a p-element centralizing Mp’ then of course x € Fp and
X € CF(Mp) n CF(Mp,) = CF(M) € M. Thus Mp has the property that it
contains every p-element of its centralizer in (Y n H)F. Since this group
is clearly p-constrained, we may apply 3.1 toget Y NH S Op,((YﬂH)F)
forall pen Thus [YNH, F]=1 andso YNHC Cy(F).

Now K= (YN H)X is a subgroup of R and so is a solvable
X-invariant group. Thus Y NH C S(X) nH C S(H) n CH(F) C F by the
well known property of Fitting subgroups of solvable groups. Since Y
is a 7'-group and F isa m-group, YNH =1,

(i) If Q eVlR(M, q), q € 7', then QgOﬂ,(R).

We show QCO_,(R) for all p e m. For such a prime p, we have
M= Mp X L and si;ce [7] > 1 and M 2 CF(M) we must have L #1,
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Since M_D Z(F(H)p), CG(Mp) c CG(Z(F(H)p)) C H. Now
L SO,(H) nCyM) SO (CoM ) SO (N;(M)). By3.2, LSO ,R)
since R is solvable and so [L, Q] < Op,(R). We show that [L, Q] = Q.
For Q=[L, Q]CQ(L) by 0.4, and CG(L) C H since L contains a non-
trivial normal subgroup of H, namely Z(F(H)p,). Thus CQ(L) CQnH=1
by step (i). Hence Q=[Q, L] g O”,(R).

We have thus shown in (i) and (ii) that every element of
MR(M, q), q € 7', lies in O”,(R). On the other hand, some Sylow g-
subgroup of O_, (R) is certainly M-invariant and the M-invariant Sylow
q-subgroups of O”,(R) are conjugate under CG(M) n O”,(R) =1, Thus
I/]R(M, d) has a unique maximal element, /

Theorem 5.3, Let G be a minimal simple group of odd order,

H a maximal subgroup of G, U an elementary abelian p-subgroup of
F = F(H) such that
o vl > p’;
or (i) |Ul=p" and UCA eseR, (p),
Set M = CF(U), W(F(H))—. Assume |1r’ z 2. Then for any prime
qen, MG(M, qQ =1L

Proof. We show that |4 Gr(M, q) has a unique maximal element,
For then if Q is this unique maximal element of MG(M, q), since
NF(M) permutes the maximal elements of MG(M, q) under conjugation,
it follows that Q is the unique maximal element of |4 Gr(NF(M), q). After
a while, since F is nilpotent, IAG(F, q) has a unique maximal element
and then Gr(H, q) has a unique maximal element. But by the maximality
of H, QC H and so Q =1 because Oq(H) =1,

The proof that |/1G(M, q) has a unique maximal element follows
closely the proof of the Transitivity Theorem 4. 3.

Suppose that Q, R are maximal elements of IAG(M, q) and suppose
Q, R have been chosen distinct such that [Q nR| is maximal.

If QnR #1, let K= NG(Q N R). Apply 5.2 with K in place of R,
We get MK(M, q) has a unique maximal element S, say., Because
KnQ, KNR € (M, 9), (KnQ, KnNR)C S, Since SNQ2KNQDQNR,
if 8* el/]a(M, q), S* 2 S, choice of Q, R ensures that S* =Q. But
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again S* = R, a contradiction. Thus Q R =1 and any two maximal
elements of MG(L;’ q) are disjoint,
Let x e U and apply 5.2 to C_(x). Itfollows that A ™, q)
G Ce®

has a unique maximal element T. We show that there exists x € U such
that CQ(x) #1, CR(x)¢1. But <cQ(x), CR(x)) CT. Let T* ema(M, q),
T* 3 T. Then T*NQ>2C (x) #1 whence T* = Q. But again
T* n R2C (x) # 1 and so T* = R. This is the required contradiction,

If ﬁ” > p , we are clearly done by 4, 2.

We may therefore assume that |U| = p2 and UC A ¢ SGDZB(p).
Clearly Ql(Z(Fp)) g U since otherwise we could replace U by
uQ (Z(Fp)), an elementary abelian group of order _\:_ p3. Thus
CoU S Cu®, (Z(F ) C H

Now Q (C (x) x €U ) As already noticed, C (x) has a
unique maximal M-invariant gq-subgroup, X say. If x € U# is such that
CQ(x) # 1, then letting X* € V]E(M, q), X* 2 X, we have X* anCQ(x)aél
and s0o X* =Q. Thus X = CQ(x). Now A normalizes M = CF(U).
Hence A permutes the elements of MG(M, q) under conjugation. Thus
A cc G(x) normalizes CQ(x) whenever CQ(x) # 1. It follows that A
normalizes Q. Similarly A normalizes R.

But by 4.3, QandR are conjugate by an element of Op,(CG(A)).
Since C(A) C C(U) C H, there exists h € Ci;(A) such that (Qh, R)
1s agqg- group But h e C (U) normahzes M. Hence M normahzes
Q R and so M normahzes <Q R) D R. It follows that Q c R
and so Q =R. N0w1f ueU is suchthat CQ(u) #1, then C (u ) # 1.
Since h €C (U), = u. Hence there is an element u € U such that
C Q(u) #1, CR(u) # 1. This completes the proof. /

Theorem 5,4, Let G be a minimal simple group of odd order,
M a subgroup of F(H) containing Z(F(H)), 7 = n(F(H)). Assume that
|7 | >2 and l/]G(M, 7') = {1}. Then H is the only maximal subgroup

of G which contains M.

Proof, Suppose that L is a maximal subgroup of G which con-
tains M. Clearly #(F(L)) C 7 since V]G(M, ') = 1. Because
Z(F(H)) € M, the centralizer of any Hall subgroup of M is contained in
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M, as we have seen before. Then if o C 7,

M, S Co(Mp) O (H) © Oo.(CG(Mp)), where p €o.

c

Therefore M, < Op,(CG(Mp)) nNLC Op,(CL(Mp)) for all p € 0.

By 3.2, M, Op,(L) for all p € 0. Hence M, C OU,(L). Thus
M, S CG(F(L)O') and F(L)(I < CG(M(J") C H, for every subset ¢ C 7. If
o = #(F(L)) # n, we see that MU, c CG(F(L)) = F(L), a o-group. Thus
7 = n(F(L)).

Taking 0 =7 - p, we now have M = Mp g (L) centralizes
) =
F(O (L)) cO (L)(F(Op,(L))). Thus by 2 [M L)] 1 and so
(L) € H.
0,(L) €

But Op(L) = F(L)p CH and CG(Op(L)) C L. Hence
Op.(L) < Op'(CG(Op(L))) NHC Op.(CH(Op(L))). By 3.2, Op.(L) < Op.(H).
By symmetry, Op,(H) c Op,(L) and since Op,(H) #1 we have
H= NG(Op'(H)) = NG(Op'(L)) =L, /

Theorem 5,5. Let G be a minimal simple group of odd order,

p aprime, H a maximal subgroup of G satisfying O_,(H) #1, V an

elementary abelian subgroup of order p2 of G suchthat C G(x) CH

for all x € V', Then H is the only maximal subgroup of G containing
V.

Proof, Let P be a Sylow p-subgroup of H containing V.
Every p'-subgroup of G normalized by V is contained in H. Hence
the subgroup (MG(P, p')) CH. Let

P, =PnO,, (H), QeUg(P p), QCH
cQn H) C .
Then [P, QJSQNO,, (H) O, (H). Thus

Q0 (/0 () € Cy (s (Py) = Ciy (PO (/0 )

Since H is a p-constrained, C (P )S O, (H). Thus
Q¢ o (H) and so QCO J(H). It follows “that {1 P p')) S
0, (H) el/l (P, ). Hence (MG(P p')) =0 p,(H)

Now N (P) permutes the elements of MH(P, p') under con-
jugation and so normalizes Mg®, p)) = Op.(H) # 1.
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Thus NG(P) C H. Hence P is a Sylow p-subgroup of G.
Choose L 2V, L # H such that

(i) |L nH|_  is maximal and then
G) |L] is maximal and then
Gii) |L] is maximal.

Let R be a Sylow p-subgroup of L. n H containing V. There is
no loss of generality in assuming R _g P replacing V by an H-conjugate
if necessary. If R =P, then NG(R) CH If RCP, then NP(R) DR
and by the choice of L, H is the only maximal subgroup of G containing
NP(R). Thus NG(R) C H in every case. Clearly R is a Sylow p-sub-
group of L.

We have O (L) € H because Op (1) is V-invariant,

Set S=R nO (L)<lR Since L=0 (L) N (S) and
O ,(L)CH, L#H, N (s)iﬂ Thus Np,(8) = Rp and S#R Because
|L| IN )] o We may assume that N G® S L.

Now a solvable group of odd order w1th a Sylow p-subgroup of
rank < 2 has p-length 1 by 3. 3. Since L does not have p-length 1,
r(R) 2—3. Thus P2 R contains a 3-generated abelian subgroup and by
[8] Lemma 8 4, SEX_(P) # #. Let A € SEX_(P).

If x €Ny (S) C L, then [S, x, x] = 1. The p-stability of L, a
solvable group of odd order, shows that x € Op(NL(S) mod CL(S)) =
Op',p(L)' Thus NA(S) =C__ S and A g S.

Now let q be a prime different from p. The Transitivity
Theorem 4. 3 ensures that if Q €lA* (A q), neN (A) then Q e (A q)
and even Q" el/la(A, q) because all elements of l/]a(A, q) have the
same order, Moreover, there exists c € QO_,(C (A)) such that an =Q.
Hence N (A) = (N QnN (A))O ,(C (A)). But PCN (A) is a Sylow
p- subgroup of N (A) and so there ex1sts m €N (A) such that

-1

m
P CNSA) 0 N@.

Then Q™ is P-invariant. Thus if Q eNX(A, q), there exists a
conjugate Q™ ¢ ME(P’ q). We have already seen that (I/IE(P, a)) gop,(H).
Thus at least one element of I/IE(A, q) is contained in O_,(H).
= X
But CG(A) A Op,(CG(A)) and Op,(CG(A)) char CG(A). Now
V normalizes A, CG(A), Op,(CG(A)) and so Op,(CG(A)) C H. Since
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Op,(CG(A)) acts transitively on the elements of l/I*G(A, q) and one of them
lies in O ,(H), N5(A, @) SO ,(H). Since SJA, UL, p) = O (H)
and NG(S) c NG(ME(S, p")) = H, a contradiction. /

6. THE CASE |#(F(H))| =1

The Theorems 5. 2, 5.3, 5.4, 5.5 are directed towards the case
|7r| > 2. When F(H) is a p-group, it was very soon recognized that
simiTar results were implied by the Glauberman ZJ-Theorem.

Let G be a minimal simple group of odd order, H a maximal
subgroup of G containing a Sylow p-subgroup P of H for which
8@,013(P) #¢. Let Ac 8@,013(P) and agssume that F(H) is a p-group.
The first observation is that P is in fact a Sylow p-subgroup of G and
moreover NG(P) CH

Lemma 6. 1. U,(A, p))= {1} and N,(P) CH.

Proof. Since H is p-stable, any element A € 8@,013(P) is con-
tained in Op(H) =FH) 2 CG(F(H)). Thus Z(F(H)) CA and
CGA) S CoZ(F(H)) S H. Butby 3.2 0,(Cy(A) S O,() = 1 and so
CG(A) = A. By the ZJ-Theorem of Glauberman [9],

Z(J(P)) Jd H. Hence NG(P) < N(Z(J(P))) = H.

Now take any prime q # p. From the Transitivity Theorem 4. 3,
since C G(A) =A, IAG(A, q) has only one maximal element. Since
A ;l F(H), ME(F(H), q) has only one element and then M*G(H’ q) has only
element Q. Since H is maximalin G, QCH and then Q C Op(H) =1.
Thus MG(A, q)=1 andso MG(A, =1 /

Lemma 6,2. H is a uniqueness subgroup for P,

Proof, For if L is another maximal subgroup of G containing
P, 6.1 implies that O ,(L) =1 and then the ZJ-Theorem ensures that
L=NZJ®P))=H. /

More surprising we see that H is in fact a uniqueness subgroup
for A,
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Lemma 6,3, H is a uniqueness subgroup for A.

Proof. Suppose L is another maximal subgroup of G con-
taining A. Choose L in such a way that |H n L|p is maximal. Let
Q be a Sylow p-subgroup of H N L containing A. If Q is a Sylow
p-subgroup of H, then Q =P, h ¢ H, and so Ng@CH 1 Q] <lu|,
then NG(Q) C H by the choice of L. Thus in any case Q is a Sylow
p-subgroup of L.

Since Op,(L) =1 byé.l1, L=NG(Z(J(Q))). But then Q is a Sylow
p-subgroup of G and also of H. This contradicts 6,2, /

Lemma 6.4, Let V be an elementary abelian subgroup of order

p2 of H and suppose that CG(x) CH forall x eV#. Then H is a

uniqueness subgroup for V,

Proof. Suppose that L is another maximal subgroup of G
containing V and choose L so that fL n pr is maximal. Let Q be
a Sylow p-subgroup of H N L containing V. Again Q is a Sylow p-
subgroup of L. By the ZJ-Theorem L =O '(L)NI (Z(J(Q))). Since by
hypothesis O (L) C H, N(Z(J(@)) ¢ H. Since INH(Z(J(Q)))|p> fQ]p
we have a contradiction. /

Lemma 6.5, Let XC YCP where Y is an elementary abelian

group of order p3, |X| = pz. Then H is a uniqueness subgroup for X.

Proof. Let V. be a Y-invariant subgroup of Ql(A) of order p°.
Let V2 = CY(Vl)' Since Y/CY(Vl) is a subgroup of GL (2, p), it has
order at most p. Thus IVZ , 2p2 If xe€ Vf, CG(x) 2 A, and since H
is a uniqueness subgroup for A, CG(x) g H. By 6.4, H is a uniqueness
subgroup for V1' Now if x € Vf, CG(x) 2V, and so CG(x) CH. By
6. 4 again, H is a uniqueness subgroup for Vz. Finally, if x € X,
CG(x) 2Y>2 V2 and so CG(x) C H. By 6.4 yet again, H is a uniqueness
subgroup for X. /
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7. THE PROOF OF THE UNIQUENESS THEOREM 5. 1

We commence the final attack on 5. 1 having established in §5 and
§6 uniqueness theorems sufficient for the task. Thus we fix G a minimal
simple group of odd order, P a Sylow p-subgroup of G for which
SGTnB(P) # ¢, H a maximal subgroup of G containing NG(P), if P is
abelian, and containing NG(Z(P) nPpY 2 NG(P) otherwise. Let
A« S@SLB(P) and A0 = Ql(A).

We show that H is a uniqueness subgroup for A and establish
5.1; but note that we will have in fact established that H is a uniqueness
subgroup for every elementary abelian p-subgroup of order p2 which lies
in an elementary abelian p-subgroup of P of order p3. In fact this is
precisely the statement of 6, 5 if F(H) is a p-group, while if not, suppose
that H is a uniqueness subgroup for A CP. Let XCYCP where Y
is of type (p, p, p), |X| =p2. Let Y normalize V1 < Ql(A) of order
p2 and let V2 = CY(Vl)' Then if x € Vf, CG(x) 2 A and s#o CG(x) CH.
By 5.5, H is a uniqueness subgroup for Vl. Now if x € Vz’ CG(x) 2 V1
and so CG(x) < H. We use here 5, 5 since V2 is non-#cyclic to get that
H is a uniqueness subgroup for Vl. Finally if x €X', CG(x) 2 V1 and
S0 CG(x) C H. By 5.5 again, H is a uniqueness subgroup for X.

We thus show that H is a uniqueness subgroup for A, We say
that a maximal subgroup X of G is of uniqueness type and q is a

uniqueness prime if there exists a prime g such that F(X) has an ele-

mentary abelian g-subgroup U such that

® |ul>q or

) |Ul=q® and UCA € $e:, (q).

Assume that H is not a uniqueness subgroup for A. Note that if
F(H) is an r-group where a Sylow r-subgroup R of H satisfies
S@Ul3(R) # @, then H is a uniqueness subgroup for every elementary
abelian subgroup U of R of order r’ which lies in an abelian subgroup
V or R of type (r, r, r) by 6.5,

Suppose on the other hand, |77(F(H))| i 2. Then, if U is an
elementary abelian r-subgroup of F(H) of order _>__ r’ or of order r’
contained in an element of S@SLB(r), it follows from 5. 3 that

I/IG(M, ') = {1} where M=CF(U), F=F(H). Thenby5 4, H isa
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uniqueness subgroup for M. Now if V c U is a subgroup of order r’

and x € V#, CG(x) oM from which it follows that CG(x) C H. Now
apply 5. 5 to get that H is a uniqueness subgroup for V.,

Thus a subgroup H of uniqueness type is a uniqueness subgroup
for very many subgroups of H.

The proof of 5.1 hinges on the study of subgroups of uniqueness
type. First we show that subgroups of uniqueness type exist in G.

Lemma 7.1, H is a subgroup of uniqueness type.

Proof. Suppose that H is not of uniqueness type. Then F(H)
does not contain an elementary abelian subgroup of order q3 for any
prime ¢ and a Sylow p-subgroup of F(H) is cyclic. For if F(H)p is
non-cyclic, since F(H)p np ;1 P, there exists V S P of type (p, p),
V C F(H)_. But every such normal subgroup lies in an element of
SGEZB(P). For let A € SGSZB(P), A1 < A a normal subgroup of P of
type (p, P, P). Since CL(V)NA, has order > p’, V(Cy(V)NA )CP
and is elementary abelian, If CH(V)ﬂA1 4=Z V, then V lies ina 2 3-
generated abelian normal subgroup of P while if CH(V) n A1 cv,

A= A1'

Let Q= F(H)q, where q is aprime q#p. If P does not
centralize Q, let R = Ql (C) where C is a Thompson subgroup of Q.
(See 0.4.) By 2.4, [P, R] #1. Since r(Q) <2, r(R) § 2 and so
IR| <q’. Let R=R/®(R). Then P acts non-trivially on R and
H/CH(R) is an odd order subgroup of GL(2, q). It follows that
(H/CH(R))' is a g-group and so P N H' C CH(R). Thus P NH' C CH(Q).
This holds for all q #p. Since H/CH(F(H)p) is abelian because F(H)p
is cyelic, P N H' C CH(F(H)p) and PnH' C CH(F(H)) < F(H).

If P is abelian, then fusion of elements of P is controlled by
NG(P) by the well-known Burnside Lemma, Thus the focal subgroup

g g

(x'x®:x€eP, geG, x® ¢ P) =5 satisfies

n

s=(x"'x":x€P, n eN4(P) (CH) S P NH C FH).

Thus by the application of the transfer we have P n G' C F(H).
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Since G has no non-trivial p-factor group, P € F(H) is cyclic. This
is not the case, B

Hence P'#1. Butsince P NH'C F(H) we must have P nF(H)=#1,
Let Z be the subgroup of order p contained in F(H). If Z CHN H®
where g € G - H, choose g so that IH n Hg| is maximal, Let S be a
Sylow p-subgroup of H n u® and assume without loss of generality that
SCP. Since Z dH, Z lies in every Sylow p-subgroup of H. If
S = PCHn H® then P, Pg_1 CH andso P = Pg-lh, h € H. But then
g 'h e—NG(P) CH,geH, a contradiction. Therefore §C P,

Let T be a Sylow p-subgroup of NG(S). Then T 2 S and so
NG(T) g H by the choice of Hg. Hence T is a Sylow p-subgroup of
NG(S). Since P nH' < FH), T' < F(H) and so T' is cyclic. By 3.4,
NG(S) has p-length 1.

Thus NG(S) =0 ,(NG(S))(NG(S) n NG(T)) by the Frattini argument.
Since NG(S) d£’ H, NG(T) CH, Op,(NG(S)) £ H., But Op,(NG(S)) < CG(S) <
CG(Z) g H. This contradiction shows that if Z g H nHE, then g € H.

-1
Now let x € P, x® € P. Then Z C Z(P) and so Z, z8 o CG(X).
-1 = -
Choose y ¢ CG(z) such that (Z, Z& Y) is a p-group and then find
-1
z €G such that (Z, Z& Y)? C P. Then we have first Z, ZZC P whence

z € H and then Z, 7% vz €¢P whence g 'yz €H. Thus g 'y €H.
Hence x5 =% lg where y_lge H since y € CG(x). Thus H controls
p-fusion,

Transfer now yields P N G' C P nH' C F(H). This contradicts
the simplicity of G. / -

We devote the next several lemmas to a study of subgroups of
uniqueness type, now being certain that they exist. Fix our notation so
that X is a subgroup of uniqueness type, q is a uniqueness prime, Let
B= QI(ZQ(F(X)q))' Remember that H is not a uniqueness subgroup

for A, otherwise we are done.

Lemma 7.2, Either X is a uniqueness subgroup for every sub-

group of order q2 of B or B is non-abelian of order q3 and X is a

uniqueness subgroup for every subgroup of order q2 of B which is
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normal in some Sylow q-subgroup of X,

Proof. If |B| > q4 then every subgroup V of order q2 of B
lies in an elementary ab_elian subgroup U of order q3 of B. For if
Z(B) $V, the result is clear and if Z(B) C V either V= Z(B) in which
case the result is trivial using exp B=¢q, or Z(B)CV, |Z®B)| =q. But
then VIB smce B'=Z(B) and so B/C (V) has order < q. Thus
|C (V)| > q and we are done.

If #(F(X)) = {q}, then 6.5 shows that H is a uniqueness subgroup
for V. If m(F(X)) D {q}, then 5.4 implies that UM, ') = 1, where
M= CF (x)(UL. Then 5. 5 implies that X is a uniqueness subgroup for M.
Now if x eV C T, CG(x) 2 M andso CG(x) CX. Thus X is a unique-
ness subgroup for V by 5. 6.

We may therefore assume that |B| <q’. If B is abelian of
order q3 the above argument applies. We have already remarked that
X is a uniqueness subgroup for some g-subgroups of X and so X must
contain a Sylow g-subgroup Q of G! Now any normal subgroup V of
Q of type (q, q) lies in an element of S@ERB(Q) by a familiar argument.
Thus by the remark at the beginning of §7 we see that X is a uniqueness
subgroup for V. This completes the proof. /

Lemma 7.3, If VCYCX, where Y is of type (q, q, 9) and

|V[ = q2, then X is an uniqueness subgroup for V,

Proof. By 7.2, Y normalizes a g-group U of order q2 and

~nN

type (q, ) for which X is an uniqueness subgroup. Thus |CY(U)| i q

since Y/CY(U) CGL(2, q). If x€ CY(U)#, then CG(x) 2 U andso

CG(x) CX. Byé.6and5 5 X is auniqueness subgroup for CY(U).

Thus X is a uniqueness subgroup for V by 6.6 and 5, 5 again, since if
#

xeV, CG(x) 2Y2 CY(U) and so CG(x) CX. /

Lemma 7.4, The uniqueness prime q belonging to X is

different from p.

Proof. This is clear by 7. 3 since X is not a uniqueness sub-
group for A,/
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Lemma 7.5. No non-cyclic subgroup of A centralizes a non-

cyclic subgroup of B.

Proof. Let D c A0 be of order p2 and suppose that
V S CpD) is of type (, p).

If B is non-abelian of order q3, V/Z(B) is a non-trivial sub-
group of B/Z(B) which is centralized by D. But the elements of D
induce automorphisms of B which preserve the symplectic form
[, ]:B/Z(B) X B/Z(B) = Z(B) and so these automorphisms have deter-
minant 1, Thus if B is non-abelian of order q3, then |CB(D), z p2
implies that CB(D) =B and so X is a uniqueness subgroup for CB(D)
by 7.2. If B is not non-abelian of order q3, then X is a uniqueness
subgroup for CB(D) by 6. 2 also.

W#e may now apply Lemma 5, 6, Note that by 7, 4, Op,(X) =1, and
if xeD’, CG(x) 2 CB(D). Since X is a uniqueness subgroup for
CB(D), CG(x) CX. By 5.6, X is a uniqueness subgroup for D, and also
A, and this is a contradiction. /

Lemma 7.6, Let A0 = 91(A) and B = 91(22(F(X)q)) as usual.
Then

@) Cp)=1 and |A |=p’

(ii) A0 contains a subgroup D of order p2 such that if
E=CpD), then |E[=q and N;(E) c X

(iii) There exists d € D such that C G(d) cX

Proof. By 7.5, if D is any subgroup of A0 or order pz,
lcg®| <a.
If B is non-abelian of order q’, then A acts on B = B/Z(B)

and so Ao/CA (B) € GL(2, g). Thus ]AO/CA (B)| < p°. On the other
= o =
hand, if IC A (ﬁ)l z pz, we would have a non-cyclic subgroup of A which
0
centralizes B and therefore B, a contradiction to 7. 5. Therefore

|A0I =p3. If A0 centralizes Z(B), then A0 will induce a symplectic
group of automorphisms of B/Z(B) and so a subgroup V of A of type
(p, p) will centralize B/Z(B) and Z(B). It follows that V centralizes
B, a contradiction to 7. 5.
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Let D= CA (Z(B)). Since Ao/D < aut Z(B), AO/D is cyclic and

so |D| =p’. Since0 Cp(A) S CpD) =Z(B) and [A , Z(B)] #1, we
have CB(AO) =1, Therefore,_ in this case, E = Z(B) _ﬂ. X and so
NG(E) = X, Finally since D/CB(E) is cyclic, there exists an element
d €D such that B C CG(d). Then CG(d) € X, a uniqueness subgroup
for B. Thus the result is completely proved if B is non-abelian of
order q3.

For the remainder of the proof, we assume that B is not non-
abelian of order q3. Thus X is a uniqueness subgroup for every sub-
group of B of order q2.

Now the image of any irreducible representation of A on a vector
space of characteristic q #p 1is cyclic. Thus each minimal A-invariant
subgroup of Z(B) or B/Z(B) is cyclic. Otherwise A0 has a subgroup
of order i p2 which centralizes a subgroup of order q2 of B, contra-
dicting 6. 5. Remember that the fixed points of A on B/Z(B) are just
images of fixed points of A by 0,3, Let N be an A-invariant subgroup
of B of order q°. If |Z(B)] 2 a° we may choose N C Z(B) by
Maschke's Theorem, while if IZ(B)I = q we may choose N/Z(B) a
minimal A-invariant subgroup of B/Z(B).

As before A /C, (N) C GL(2, q) and so IAO/‘CA (N) | < p°.

0 0
By 7.5 |CZ (N)l <p andso IAOI = p3. Let N1 be a minimal A-
0
invariant subgroup of N and define D = CA (Nl). We claim that D
0
satisfies the conclusion of the Lemma,

First if A0 centralizes N1’ A0 induces a cyclic group of auto-
morphisms on N/Nl. Thus a subgroup of order p2 of A0 centralizes
N/N1 and Nl. This contradicts 7.5. Therefore D # A0 and
CB(AO) c CB(D) n C(Ao) = NlnCB(AO) =1, Since Ao/D C aut N1’

ID| = p°. In this case E = N, and N,(E) 2N, while X is a unique-
ness subgroup for N by 7.2. Thus NG(E) C X. Finally since D
centralizes N1 and induces a cyclic group of automorphisms of N/N1

some element d € D centralizes N/N1 and Nl. Then NC C_(d). But

G
X is a uniqueness subgroup for N by 7.2. Thus CG(d) CX.

This completes the proof. /
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Lemma 7.7, If R is any p—subgroup of X Containing A, then
N _ (R) C X.

Proof. Let Q* be a maximal element of |4 G(A’ q) containing B.
Then Q* C X, because X is a uniqueness subgroup for B. By the
Transitivi—t.y Theorem 4. 3, every element of MG(A, q) lies in X,

Note that CG(A) g CG(D) g X by 7.6(iii). Now if R is a p-
subgroup of X containing A, then (MG(R, q)) C X and Bg(l/]G(R, Q).
As NG(R) normalizes this subgroup (MG(R, q)’, we have NG(R) € X
since X is a uniqueness subgroup for B. This completes the proof, /

We are now in a position to contradict the existence of G. We
know by 7.1 that H is a group of uniqueness type and so the results of
6.4, 7.5, 7.6, 7.7 apply to it,

Lemma 7.8, Put X=H andlet E, D, B be as defined in 7. 6.
If B is not non-abelian of order q3, and S=Pn Op' p(H), then
’
-
NH(S) < NG(E).

Proof. By 5.6, if CG(d) CH forall de D#, H would be a Y
uniqueness subgroup for D and A. Thus there exists an element deD
such that C G(d) i{ H., Let K be a maximal subgroup of G containing
CG(d). Then K =H while E = CB(D) < CG(d) ckK

If K is of uniqueness type, since A C K, we may apply 7.7 and
get that P C K. But A is an abelian normal_subgroup of P and since H
is p-stable, A C S. By 7.7 again applied to K, NG(8) CK. Thus N()0H
normalizes B NK 2 CB(D). If BNK# CB(D), since H is a uniqueness
subgroup for all subgroups of B of type (p, p) by 7.2, it follows that
H = K, a contradiction. Remember we have assumed B is not non-
abelian of order q3. Thus BnK= CB(D) is normalized by NG(S).

Hence we may assume that K is not of uniqueness type. We
derive a contradiction.

We show first that E centralizes F(K)q,. For if r is a prime
different from q such that [E, F(K)r] # 1, we note that F(K)r has no
elementary abelian subgroup of order r’. Since A normalizes E, we
may consider the action of EA on F(K)r. By a now hopefully familiar

argument, using a short trip via the Thompson subgroup, we see that a
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homomorphic image EA of EA is a subgroup of GL(2, r). But then
EA, a subgroup of odd order of GL(2, r) is abelian, since the derived
subgroup of any such subgroup if an r-group and E <\ EA, Hence
[E, A]CEn CG(F(K)r). Thus either E C CG(F(K)r) or [E, Aj=1,
This last possibility does not occur by 7. 6 since CB(AO) =1, Thus E
centralizes F(K)q,.

Now if F(K)q, = F(K), we have a contradiction because then
E C C4(F(K) C F(K).

Since NL(E)CH by 7.6, E {4 K. Thus EF(K), 0 H 2
E(C4(E) 0 F(K))) O E, since |E| =q, and EF(K), N H, being non-cyclic
and of odd order contains an elementary abelian g-subgroup Q of order
q°. Now we have just shown that [E, F(K)y.] = 1, while
[F(K)q, F(K)q,] =1 obviously. Thus [Q, F(K)q,]= 1. Now
F(K)q, < CG(E) C H. If some element of order q in CH(Q) did not lie
in Q we would have Q contained in a subgroup of type (q, q, q) of H
and by 7.4, H would be a uniqueness subgroup for Q. This is not the
case since Q g K. We thus have F(K)q, g H normalizes QB and
centralizes the subgroup @ which contains all elements of order q in
its centralizer. Apply 2. 2 and see that [F(K)q,, B] =1, Thus
N(FEK) ) 2 B. But H is a uniqueness subgroup for B. Hence
K= N(F(K)q,) C H unless F(K)q, =1 and F(K) is a g-group. But then
F(K) has no subgroup of type (q, 9, q). Let C be a Thompson sub-
group of F(K)q. Then CK(E) is a q-group and K/CK(E) S GL(2, q)
as usual, where C = C/®(C). Thus K has a normal Sylow q-subgroup
F(K). But A C K acts faithfully on F(K). This is impossible since A
is a 3-generat;d group and F(K) has no subgroup of type (q, q, Q).

This completes the proof, /

Lemma 7.9. Without loss of generality there exists z € Z(P)
such that CG(z) CH

Proof, Let B=Ql(Z2(F(H)q)) as usual. If B is non-abelian
of order q3, then CA(B) #1 gince A has a subgroup of type (p, p, p).
Also CP(B)ﬂ P. If P is abelian, choose =z eCA(B). Then CG(z)gB

and so CG(z) < H, a uniqueness subgroup for B. If P is non-abelian
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choose z € P' n Z(P). Since P/CP(B) is a p-subgroup of GL(2, q)
where p is odd, P/CP(B) is abelian. Thus z € CP(B) and so
CG(z) 2 B, whence CG(Z) C H. Hence if B is non-abelian of order q3
we are done,

We may therefore apply 7. 8. We then have that P normalizes
E= CB(D) where IEI =q. Thus P' centralizes E. Now [AO, E]#1
by 7.6 and so ICA (E)l = p2. Here AO = QI(A) as usual, By 7.6,
la | =p". °

If P is abelian then we may choose z =d in 7. 6 and the result
holds. If P' n Z(P) is non-cyclic, then, since by 7. 5 the centralizer of
any 2-generated subgroup of A in B has order at most ¢, we see that
CB(P' n Z(P)) = E. Then we may choose D € P' 1 Z(P) without any loss
and then for some d € D we have CG(d) C H. We are just left with the
case P n Z(P) is cyclic. But H was chosen in the beginning of §7 as a
maximal subgroup containing N(Z(P) n P") 2 NG(P) if P is non-abelian,
Thus if z € Z(P) n P, CG(Z) CH This completes the proof, /

The proof of Theorem 5. 1 now proceeds very quickly.
Lemma 7.10. If AC H nH® then g €H.

Proof. Let R be a Sylow p-subgroup of H u® containing A.
Then R # P, because if P C H nH®, wehave P, P& ' CH. Thus
P =P8 'h for some h¢H andso g 'he NG(P) C H. Therefore g €H,
a contradiction. Consequently NG(R) £H But an application of 7. 7
shows that NG(R) C H /7

Lemma 7.11., If z € P is such that CG(z) C H, then z lies in

a unique conjugate of H in G.

Proof. Amongall g € G suchthat z e H N Hg, g €H choose g
such that ]H n Hglp is maximal. Let S be a Sylow p-subgroup of
H n g% containing z. We may clearly assume without any loss that
S CP Also S #P since H contains NG(P). Let SCTCP bea
Sylow p-subgroup of NH(S). Since T O S, T must be a Sylow p-sub-
group of NG(S). For otherwise we could find a p-~subgroup T1 > T
such that T]L 4: H and thenif x € T]L - H we would have T CHnN i
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while TD S, Let U=Tn O (NG(S))

Now N (S) (o smce S#P. By 7.10 it follows that A ¢s.
Thus SNA(S) D S. If ne N (S), we have [S, n, n]=1 and since
N (S) is p-stable, n € O (N(U) nN (s) mod C (U) nN (s)) But
C (U) nN (S) c O (N (S) because N (S) 1s p- constralned Thus

A(S) g Op (N (S)) n P U. 1t follows that UDS andso N (U)E_H

by the ma.x1ma11ty of S.

But NG(S) = Op,(NG(S))(N(U) n NG(S)). Since Op,(NG(S)) <
CG(S) < CG(z) C H we have the desired contradiction, viz. NG(S) CH

This completes the proof. /

Lemma 7.12, H/H' is a p'-group.

g

Proof, Suppose that a € P and that a® ¢ P for some g € G,

Then if z € Z(P) is chosen so that C (z) CH by Lemma 7.9, we have

-1 1

z, 28 €Cq (a). There exists x € C (a) such that (z, 28 %) is a p-

group. Thus we canfind y € G such that (z, zg Xy C P. But then,
-1,
z, 2y €P implies that y ¢e H by Lemma 7,11, Thus 22 *¢H and

-1
so g 'x €H. Then a® =a* & and x"'g € H. Thus the largest p-
factor group of G is isomorphic to that of H by an application of the
transfer. Since G is simple we must have H/H' a p'-group. This

completes the proof of Lemma 7,12, /

Lemma 7.13. p||H/MH' ) Hence H is a uniqueness subgroup
for A.

Proof. Forlet S=PnO_, (H). By Lemma 7.8, N (S) either
normalizes E or |B|= |Q V4 (F(H) ))I =q. I Ng(9) gNG(E) then
NG(S) has a non-trivial p- factor group because NG(E) does. Remember
that A does not centralize E by 7. 6(i). This is impossible because
H =0, () Ny(S). On the other hand, if IB| = ¢°, letting B = B/Z(B)
we have H/CH(E) C GL(2, q). Again A does not centralize B and so
H/CH(E) is not a p'-group. But as a subgroup of GL(2, q) with p #q
we have pl [H/H'l Vi
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8. THE BURNSIDE plq"-THEOREM, p, ¢ ODD

This theorem appears in [10] and the proof is due to Goldschmidt,
However it owes a great deal to the work of Bender, since it relies on
ideas developed by him in the proof of the Uniqueness Theorem. Of
course, the theorems in §5, 86, §7 are obviously directly applicable
since they are concerned with the structure of a minimal simple group

of odd order.

Theorem 8.1. If G is a group of order paqb where p, q are

odd primes, then G is solvable,

Proof. Let G be a minimal counter example, Then G is
obviously a minimal simple group of odd order. Let P be a Sylow p-
subgroup, Q a Sylow g-subgroup of G.

(i) V]G(R, r') = {1} for any Sylow r-subgroup of G.

For if X € l/]G(R, r'), there exists a Sylow r'-subgroup R' 2 X,
Then

XG=XRR'=XR'§R'

and XGr is a proper normal subgroup of G.

Let H be a maximal subgroup of G,

(i) If ‘TI(F(H))I = 2, then F(H) is non-cyclic.

For if r = max (p, q), then H = CH(F(H)r') clearly and
CG(F(H)r) = CG(F(H)) C F(H), assuming F(H) is cyclic.

Thus a Sylow r-subgroup of H is either cyclic and contained in
F(H) or non-abelian and metacyclic. In either case H = NG(Z) where
7Z = 91(F(H)r)' But Z char Hr and so a Sylow r-subgroup of H is a
Sylow subgroup of G. This contradicts (i).

(iii) F(H) is a r-group for all maximal subgroups H.

By 5.4, H is the only maximal subgroup of G which containg
Z(F(H)). Let V c F(H) be a group of type (r, r). Thenif x € V#,
CG(x) 2 Z(F(H)) and so CG(x) CH. By5.5 H is only maximal sub-

group of G which contains V. Then clearly H contains a Sylow r-
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subgroup of G, a contradiction to (i).

(iv) Every Sylow r-subgroup R of G lies in a unique maximal
subgroup M of G and every maximal subgroup of G contains a Sylow
r-subgroup of G for some r.

For M= NG(Z(J(R))) since F(M) is a r-group for some prime r.

(v) Let R be a Sylow r-subgroup of G, M a uniqueness sub-
group containing R. Then M is a uniqueness subgroup for Z(R).

For suppose Z(R) = M1 + M, M1 maximal in G. Choose M1
such that |M1 n er is maximal. Let R1 be a Sylow r-subgroup of
M1 nM, R1 2 Z(R). Conjugating R1 by a suitable element of M we
may suppose R, CR. By (iv) R, #R. Since ING(Rl)l > IR1 [, the
choice of M1 ensures that NG(Rl) < M. Hence R1 is a Sylow r-sub-
group of Ml. But then M1 contains a Sylow r'-subgroup R', by (iv).
Then if g € G, M’;’: M}, x €R since G=R'R, R"CM .

Thus Z®R) C (| MB< G

geG

(iv) There exist Rl, R2 Sylow r-subgroups of G such that
R1 n R2 =1,

For let M be the uniqueness subgroup for Rl, Z(Rl). Choose
R, ¢ M such that IR2 nM| is maximal. Let R, M =S. Without
loss, S ¢ Rl. Hence NG(S) 2 Z(Rl) and so NG(S) CM if S#1. But
SCR,, SCR, clearly shows that N(S) ¢ M.

Theorem 8. 1 now follows immediately. For we can choose
r® = max (pa, qb). Then there exists Sylow r-subgroups R, R2 such
that R NR =1. Then |G| |R1HR2| =1r°> p%P = |cl, a

contradiction! /

N/

9. MATSUYAMA'S PROOF OF THE p*q’~THEOREM, p = 2

Lemma 9.1, If G is ap-group and H C G, then either H g G
or NG(H)2H'+H, x €G.

Proof. The group H acts onthe set S of all conjugates B+ H
for some x € G by conjugation. If S= ¢, then HJ G. Since
[{H} US| =[G NG(H)] #1 if H £ G, pi|S|. Therefore there exists
H* # H such that HX C Ng®H). /
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Theorem 9.2 [18]. If G is a group of order 2apb, then G is

solvable.

Proof. Let G be a minimal counter example. Clearly G is
a minimal simple group. By the proof of step (i) in 8. 1, no Sylow r-
subgroup of G normalizes any non-trivial r'-subgroup.

(i) If H is a maximal subgroup of G such that 7(FH))=1{2, p},
then F(H) contains a subgroup of type (r, r) for some prime r.

For otherwise F(H)2 is cyclic or quaternion while F(H)p is
cyelic. If F(H)2 is cyclic, then Hp gCH(F(H)z) and so Z(Hp) c
CH(F(H)) c F(H). Thus Z(H)p < H and Z(Hp) char Hp' It follows that
H_ is a Sylow p-subgroup of G, a contradiction.

If F(H)2 is quaternion, then since H/CG(F(H)p) is abelian,
H) C CG(F(H)p). Thus Z(H,) 0 H] C C,(F(H)) C F(H). Let Z be the
unique subgroup of order 2 in F(H). Then Z char Z(Hz) n H'2 char Hz'
Since H = NG(Z), we again have H2 is a 2-subgroup of G, a contra-
diction,

(i) If H is a maximal subgroup of G suchthat #(F(H))=1{2, p},
then H is the only maximal subgroup of G containing Z(F(H)).

For let K2 Z be maximal in G, Z = Z(F(H)). First
Zp = Op(NK(Zz)) and so Zp g Op(K) by 3.2. Thus [Zp, F(K)z] =1.
Hence F(K)2 < NG(Zp) = H. Similarly F(K)p C H

Now F(K)2 < Oz(NH(F(K)p)) < F(H)2 by 3.2 again., By symmetry,
F(H), C F(X), and H=K

(iii) If H is a maximal subgroup of G, then F(H) is an r-sub-
group for some prime r,

Let VC F(H) be of type (r, r), using step (i).

Then if x € V#, CG(x) 2 Z(F(H)) and so CG(x) CH by (ii). Let
R 2 V be a Sylow r-subgroup of H. Let S be a R-invariant r'-subgroup
of G. Then S= (Cs(x) T X € V#>. Thus SC H. Since H=RS  where
S1 is a Sylow r'-subgroup of H containing S, SH = SRsl = SSl _C__ S1 is
a normal r'-subgroup of H. Thus S < F(H)r,. Hence F(H)r, is the
unique maximal R-invariant r'-subgroup of G. If R < R1 where R1 is

a Sylow r-subgroup of G, then NR (R) normalizes F(H)r, and so lies
1
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in H, Hence R = R1 is a Sylow subgroup of G, a contradiction,

(iv) There exists a maximal subgroup M such that
MNZP)#1, MnZ(@Q) # 1 where P is a Sylow p-subgroup of G and
Q is a Sylow 2-subgroup of G.

For let Z be a conjugacy class of involutions of G containing
an element x of Z(Q). There exists y € Z such that (x, y) is not a
2-group by 1. 1. Thus xy has order divisible by p. Let HC(xy) be
the unique subgroup of order p in {xy). Choose a maximal subgroup
M of G containing N, (H). Clearly M0 Z(@) # 1, while just as
obviously Z(P) < N Gr(H) C M, where P is a Sylow p-subgroup containing
H.

We may now complete the proof of 9.2, Let M be a maximal
subgroup of G satisfying the conditions of (iv). By (iii), F(M) is a
r-group. Let R 2 M be a Sylow r-subgroup of G andlet §2 Mr' be
a Sylow r' subgroup of G. First Z(R)CC (F(M) ) € F(M). Choose
x €M n Z(S) and let N, —(z(R)x iez). Clearly N C F(M) is an
r-group. Let Q= {Z(R)y vy €G} _Q UQ U... UQS, where Ql
is an (x) orbitin €.

Let N = (Q) Since G = RS, there exists y €S such that
Z®)Y €9, and so N = (ZRVX 1 e2) = (Z®XY :ie2) =N,

Thus Ni is anr group normalized by {x). Choose ! maximal

such that N = (Qi e & ) is an r-group normalized by {x).
1 l
Assume for simplicity that N = (Ql, cees O ). Of course x € NG(N).

Let T be a Sylow r-subgroup of G containing N. By 9.1, either
N ;1 T or there exists N” # N such that N” c NG(N) z €T,

If N <1 T then since G = ST, any G-conjugate of x € Z(S) is a
T-conjugate and so %) € N(N) € G, a contradiction.

If N (N)DNZ # N, z € T, then since Q U... UQZ$N, there
exists s es such that Z(R)® € N” and 7 ([R)S d£ N. Suppose
Z®R)® €@, i> L. Then N, C NG(N) 6% andso N,(N) 2 Z®)®. Now
NNi is an r-group normalized b x and generated by Ql, Ql’ Q

a contradiction. This completes * e proof. /
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10. A GENERALIZATION OF THE FITTING SUBGROUP

Definition. Let X be any group, F(X), the Fitting subgroup of
X. We define F*(X) = socle (F(X). CX(F(X)) mod F(X)). Define E(X) to
be the terminal member of the derived series of F*(X).

It is easy to see that F(X)CX(F(X))/F(X) has no solvable normal
subgroup. For then we could choose a p-group P C CX(F(X)) such that
PF(X)/F(X) is minimal normal in X/F(X) andthen PF(X) is a nilpotent
normal subgroup of X. Thus F(X)CX(F(X))/F(X) has no solvable normal
subgroup and its socle is a direct product of non-abelian simple groups.

It is easy to see that F*(X) = F(X)E(X) and that CX(F*(X)) < F*(X).
Since this is actually the most important property of the group F*(X) -

being easily true when X is solvable - we verify this in the following

Lemma 10,1. (a) F*X) = FX)EX).
(b) [FX), EX)]=1.
() Cy(F (X)) C F*(X.

Proof, (a) is clear.

(b) F(X)CX(F(X))/CX(F(X)), being a homog)xorphic image of aoo
nilpotent group is solvable. Thus E(X) = (F*(X)) < (F(X)CX(F(X))) <
CX(F(X)).

() Suppose Cy(F*(X)) £ F*(X). Then Cy (F*X)F(X)/F(X)
CX(F(X))F(X)/F(X) and CX(F*(X)) N F*X) = Z(F¥(X)) € F(X). Thus
CX(F*(X))F(X)/F(X) N F*(X)/F(X) = 1. We see therefore that there exists
a minimal normal subgroup of F(X)CX(F(X))/F(X) which avoids
F*(X)/F(X) and this is clearly impossible since
F*(X) = socle (F(X)CX(F(X)) mod F(X)). This completes the proof. /

Since by 7. 1(b), [F(X), E(X)] =1, we have F(X) n E(X) < Z(E(X)).
Also E(X)/F(X) n E(X) = F*(X)/F(X), a direct product of non-abelian
simple groups. Thus Z(E(X)) = F(X) n E(X). Now E(X)/Z(E(X)) is a
direct product of non-abelian simple groups Si/Z(E(X)), 1gi< n
Define Ei = Sgoo). The groups Ei are quasi-simple - that is Ei/Z(Ei)
is a non-abelian simple group. They are called the components of X,

We will frequently write 'E_i for Ei/Z(Ei)'
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Lemma 10,2, (a) [Ei’ Ej] =1 if i#]j.

(b) E(X) = E1 En’

Proof. (a) [Ei’ Ej] < Z(E(X)) since E(X)/Z(E(X)) is a direct
product of groups EiZ(E(X))/Z(E(X)). Thus

[Ei’ Ej’ Ei] =1 if i#]j.

1t follows by the Three Subgroups Lemma that [Ei’ Ei’ Ej] = 1. Since
Ei is perfect we have [Ei, Ej] =1.

(b) Clearly E(X) = E1 cee EnZ(E(X)).

Hence E(X) = EX)' = (E1 - En)' = E1 - En’ This completes
the proof. /

The most remarkable property of the groups Ei is contained in
the next Lemma, We see there that any Ei—invariant solvable subgroups

of X(!) must be actually centralized by Ei’

Lemma 10, 3, (a) CX(Ei mod Z(E(X))) = CX(Ei) for any com-
ponent Ei of X,
(b) Any Ei—invariant solvable subgroup S of X is centralized

by E.

Proof. (a) Let x € CX(Ei mod Z(E(X))). Then [Ei’ x]gZ(E(X))
and so [Ei’ X, Ei] =1.

The Three Subgroups Lemma gives [Ei, Ei’ x] =1 and the
perfectness of Ei shows that [Ei’ x]=1. Thus CX(EimodZ(E(X))) c
CX(Ei)’ The other containment is obvious.

(b) Let S be a solvable Ei—invariant subgroup of X. Then
[Ei’ S] < E(X)nS. Now E(X)nS is a solvable Ei-invariant subgroup
of E(X). Consider the image of E(X) 1S in E(X)/Z(E(X)), a direct
product of non-abelian simple groups Elx ves xfn. Consider the pro-
jection maps g E(X)/Z(E(X)) -»Ej. Then ﬂj(E(X) N8)Z(E(X))/Z(E(X)))
certainly commutes with Ei’ if j#1i.

On the other hand ﬂi(E(X) n 8)Z(E(X))/Z(E(X))) is a solvable
normal subgroup of Ei’ a non-abelian simple group. Thus
(E(X) n S)Z(E(X)) /Z(E(X)) centralizes Ei and so E(X) NS commutes
with Ei modulo Z(E(X)). By 7. 3(a), E(X) nS actually centralizes Ei’

35



Thus [Ei’ S, Ei] =1, The Three Subgroups Lemma with E; = Ei shows
that [Ei’ S] = 1. This completes the proof, /
Considerable interest will be attached to the subnormal subgroups

of F*(X). The following Lemma indicates part of their structure.

Lemma 10. 4. Suppose that S<I{<| F*(X). Then
(a) F(S)=F(X) nS
() 8= (F(X) n S}E(X) n 8) = F(S)E(S).

Proof., First F(X) n S g F(S). Let S= S0 <...d Sn = F*(X).
Then by induction F(S) € F(Si) forall i=1, 2, ..., n and so
F(S) - F(X) n S. This proves (a).

Hence S/F(S) = S/F(X) n S = SF(X)/F(X) is a subnormal subgroup
of F*¥(X)/F(X) and so is a direct product of non-abelian simple groups
or the identity group. Hence S/F(S) = (8,F(©S) = s{™F(s)/F(s) and
so S=8F(S). Then E() c () = x) ) ns=E® ns. Let ~
denote the natural homomorphism modulo F(S). Then we have
EX) NS < CS(F(S)) and E(X) 0 S is a normal subgroup of S, a direct
product of simple groups. Therefore E(X) NS C E(S) and we have
() < s()C EX) n S C E®F(9). It follows that S = EG)F(S) =
(E(X)—n S)(F(X) n S). This completes the proof. /

Lemma 10. 5, Suppose S << F*(X). Then
(a) NF*(X)(S)QQ F*(X)
(b) It CF*(X)(S) C 8, then E(S) = E(X).

Proof. Apply 10.4 and get S = E(S)F(S) = (E(X) n S)(F(X) n S).
Clearly E(X) g NX(E(X) ns)n CX(F(X) nS). Thus E(X) g NX(S) and
(a) follows because F(X) is nilpotent.

To verify (b) we show that E(X) € S and the result follows from
10. 4. Suppose that E1 isa component-:)f E(X) not contained in S,
Then if El = ElF(X)/F(X) etc., we have [El, S]=1. Hence
[El, S] c F(X) n E(X) = Z(E(X)). We may apply Lemma 10, 3(a) and get
[El, S] = 1. This contradicts CF*(X)(S) cs. 7/
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Lemma 10. 6. Suppose that A< X and A=E(A). Then A4 EX).

Proof. Suppose that A = A0 <.,..49 An < An+1 =X If
n =0 the result is clearly true since [A, F(X)]C F(X)n A C Z(A) and
so [A, F(X)] =1 by a familiar argument.

Suppose A CE(A )< X. Then [EQA), FX)]S F(X) NEQA ) S

Z(E(A ). Thus [EA), F(X)]=1 and E(A)C E(A ). /

Lemma 10.7. Suppose A, BC X and F*(A) n B I F*(A).
Then F*(A) n B C F*(A n B). Further if B 2 A then F*(A) n B = F*(B).

Proof. Clearly F(A) N B < F(A n B). By 10.4,

F*(A) n B = (F*(A) n B n F(A))(F*(A) n B n E(A))
= (F(A) n B)(E(A) n B).

Now E(A) nBd F*(A) n B<< F*(A). Thus (E(A)NB)F(A)/F(A)
is a product of components of F*(A)/F(A).

Let E be some component of F*(A) contained in (E(A) n B)F(A).
Then E' C((E(A) " BFA) ) CEA) 0B and E, normalizes F(A n B),
a solvable subgroup of A. Thus E1 centrahzes F(A n B). It follows
that E C F*(A n B).

Now if B J A, then F*(A) n B C F*(B). Conversely
F(B) = F(A) N B C F*(A) n B. Since E(B) << A, by 10.6, E(B)C E(A)NB.
Hence F*(A) n B = F*(B). /

Lemma 10.8. Let U be any subgroup of X. Then

E(X) = (CG(U) N E(X)[EX), Ul

Proof. First [E(X), U] J E(X). Let E1 be a component of
E(X) not contained in [E(X), U]. We show that E1 c CG(U). Since
[El, U] € [E(X), U], we have [El, ujc CG(El)' Thus [El, U, E1]=1
and, by the Three Subgroups Lemma, [El, U] = 1. This completes the
proof. 7/
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11. GROUPS WITH ABELIAN SYLOW 2-SUBGROUPS

J. H. Walter obtained a characterization of finite groups with
abelian Sylow 2-subgroups in [22], [23]. Bender offers a novel approach
in [5]. In this section we commence this classification by Bender of
groups with abelian Sylow 2-subgroups. This depends on the character-
ization also due to Bender of groups which have a strongly embedded
subgroup. There are many equivalent formulations of this concept. The

following definition suffices for our purposes here.

Definition 11.1, A subgroup H of even order of a group G is
strongly embeddedin G if H#G and H N H® has odd order for all
x €G- H.

In [4], Bender characterized all finite groups which have a strongly
embedded subgroup, If G is a non-abelian simple group and has a
strongly embedded subgroup, then G = SL(2, 2n), Sz(22n+1), U3(2n) for
suitable n. Here SL(2, 2n) denotes the group of all 2 X 2 matrices

of determinant 1 with coefficients from the field of on elements. The

groups Sz(22n+1), U3(2n) denote the Suzuki simple groups, see [20],
and the projective special unitary 3 dimensional group over a field of
22n elements, respectively.

We are here interested in groups with abelian Sylow 2-subgroups.
Of the above three classes of groups, only the groups SL(2, 2n) = L2(2n)
have abelian Sylow 2-subgroups. The known groups which have abelian
Sylow 2-subgroups in fact include just three more classes of groups. The
projective special linear 2-dimensional groups Lz(q), where q is an
odd prime power such that g = +3(mod 8), all have Sylow 2-subgroups

which are elementary abelian of order 4. The simple group J; of
2n+l

’

Janko [16] and the Ree simple groups G;(q), where q = 3
n 2> 1, [19] all have elementary abelian Sylow 2-subgroups of order 8.

It is still unresolved whether this completes the list of groups
with abelian Sylow 2-subgroups. The groups of Janko and Ree are clearly
the most intriguing groups on the above list. They have a single class
of involutions and if t is one such, C(t) is isomorphic to {t) X E where

E = Lz(q) and q is odd. Of course, it follows that q = +3(mod 8) since
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otherwise a Sylow 2-subgroup would be non-abelian, We proceed to
define a JR (Janko-Ree) group.

Definition 11.2. A simple group G with abelian Sylow 2-sub-
groups is called a JR-group if G contains an involution t such that
CG(t) ={t) X E, where Lz(q) CECPILR, q and q is odd.

1t follows that [E : Lz(q)] is odd since otherwise a Sylow 2-sub-
group is non-abelian, It is easy to see that a JR-group has a single
class of involutions and so the groups Jl, Gi(q), q= 32n+1’ n i 1, are
groups of type JR.

1t was shown by Walter [22] that in a group of type JR, the group
E which occurs as the business end of the centralizer of an involution in
fact must be isomorphic to Lz(q). Now a simple group G with an in-
volution t such that C G(t) =(t) X E where E = L (@), q =+3(mod 8)
first has q = 5 in which case G = J1 by [16], or has q = 32n+1,
n> 1, by {17). In an early paper, H. N. Ward [24] showed that the
character table of G is determined and Janko and Thompson {17],
showed that the 3-Sylow normalizer of G has a uniquely determined
structure., Further results have been obtained by Thompson [21], but
the final determination of the multiplication table of G still eludes us.
Thus either a simple group of type JR is J , °F GZ(q) or a new simple
group with the same character table (and so order) as GZ(q) and with

very similar structure.

Definition 11. 3. A group G with an abelian Sylow 2-subgroup is
said to be an A*-group, if G has a normal series 1 g N g M C G where
N and G/M are of odd order and M/N is a direct product of a 2-group
and simple groups of type L _(q) or JR.

Remark, Our definition of a JR-group differs only slightly from
that of Bender [5]. His definition requires (and his proof uses crucially)
the fact that the centralizer of an involution of a simple group G of type
JR is a maximal subgroup of G. This follows from the Definition 11. 2,
as will be proved in 12. 2 below.

We state the main theorem of Bender [5] here.
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Theorem A, Let G be a finite group with an abelian Sylow

2-subgroup. Then G is an A*-group.

Remark., If a group G has an abelian Sylow 2-subgroup T of
rank 1, then G is solvable and 2-nilpotent and clearly an A*-group. If
T has rank 2, then G is 2-nilpotent unless T is of type (Za, 2a). But
then if a> 1, G is solvable by [7] and clearly an A*-group since it has
2-length 1. Thus we may assume that ITI =4 and then we can apply
the results of [13]. Again G is an A*-group.

Hence the main thrust of Theorem A is directed at the case of a
finite group G with an abelian Sylow 2-subgroup of rank at least 3.

We will follow here closely the direction of Bender's proof,
expanding the abbreviation portions where necessary. Minor changes in
the presentation will be made, but the proof itself is so delicately woven
and intricate that its beauty would suffer if the changes were too great.
For generalizations of the techniques of the following sections, the

reader should consult Goldschmidt's 'strongly closed abelian' paper [11].
12. PRELIMINARY LEMMAS

Lemma 12.1 (Thompson). Let G be a group with an abelian

Sylow 2-subgroup S. Let R be a subgroup of S such that

rR)=rS)-1. If G= OZ(G), then any involution t € S is conjugate

in NG(S) to an element of R.

Proof, Of course, NG(S) controls fusion of elements of S by
Burnside's lemma,

Consider the transfer V: G=S.

Let Xy oens X xk+1t, cees Xy xnt _l:;e a system of coset
representatives of S in G chosen so that xitxi €S for i=1, ..., k,
xitxi_1 £S for i> k. Since [G: 8] is odd, k is odd.

k

Clearly V() = I xitx .

i=1
- ey -1 -1
I xtx s Xt FR flien Xt %1 X ,
r(R) =r(S) - 1. Thus V(t) = xltx1 (modR). Since O°(G) =1, V(t) =1

and so xltx;1 €ER. /

€R, since
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Lemma 12,2, Let G be a simple group with an abelian Sylow

2-subgroup S. Suppose t € S is an involution such that C G(t) ={) X E

where Lz(q) CEC PI'L(2, q). Then CG(t) is a maximal subgroup of G.

Proof, Suppose CG(t) CMCcG

If OZ(M) = M, then by 12,1, t is conjugate in M to an element
of E. Since CG(S) < CG(t) €M, and NM(S)/CM(S) acts transitively
on the non-trivial elements of M, we have NM(S) = NG(S) M Also
for all involutions s € M, s = tm, meM and so CG(S) = CG(tm) - M.

Suppose M N M" contains an involution s, where x € G-M. Then s,

-1 -1
s® €M and so there exists y € M such that s V= s. But then

x_ly € CG(S) C M, x €M, a contradiction. Hence M is strongly em-
bedded in G,

But by [4], G = L2(2n) since the Sylow 2-subgroups of G are
abelian, But the centralizer of any involution in L2(2n) is an abelian
2-group. This contradicts our assumption that C(t) ={t) X E where
E2L (a.

If 0°(M)C M thenlet K=0°(M). Clearly [M:K]=2. Since
a Sylow 2-subgroup of K2 E is of order 4, K 2 K1 2 K2 2 1, K/K1’
K2 have odd order and K1 /K2 = Lz(r) for somli prime power r. Of
course E' < K2. Hence either q =5 or r=¢q for some k, Let s

be an involution in K1' Then CK (s)/CK (s) is a dihedral group of
1 2

order r - € where r =¢€(mod 4), € =*1. Since s is conjugate to t
and CG(t) =<{t) X E, we see that any dihedral section of CG(S) has
order at most q + 1. Thus r - e§ q+ 1 If q=5 then r = 5, while
if q/r then r =q.

1t K2 # 1, then for some involution s € K1 we have CK (s) #1
2
since there exists a four-subgroup of K1 normalizing K2. But then

CG(S) contains a section which has a normal odd order subgroup CK (s)

2
with a dihedral factor group of order q - €, This situation does not

arise in CG(S) =(t) X E. Note that any field automorphism of PSL(2, q)
acts non-trivially on a dihedral subgroup of order q - €.

Thus K2 =1 and KC aut Lz(q). Since clearly t € CM(K1) 4 M
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we must have t € Z(M), M = CG(t). This completes the proof, /
The following lemma is not required for some time in the proof
of Theorem A, It is of some independent interest, affording as it does the

first glimpse of the importance of the F*-gubgroup,

Lemma 12,3, Let G be a group with abelian Sylow 2-subgroups,

p aprime, P some p-subgroup of G. Assume that r(Op(G))g 2 and
that [P, OP(F*(G))]=1. Then P C 0,(G).

Proof. Let C=C,OP(FX@)2P. If C<G thensince CIG,
by 10. 6, F*(C) = F¥(G) n C. Because [P, OP(FX(G)] =1,
[P, OP(F¥(C))]=1. For F*(G) nC = (F(G) n C) (E(G) nC) and so
OP(F*(G) n €) = OP(F(G) n ©) OP(E(G) n C). By induction PCO (C)CO (G).
Thus C =G, E(G) = 1, F*(G) = F(G).
Now let Z = Ql(Z(F(G)q)) for some q #p, and let G = G/Z,
First F(G) = F(G) because Z € Z(G). Also r(Op(@)) < 2 because
0 (G) =0 _(G) and 7 is a p'-group.
P P - (=) . () -
Let E(G)=E. Since [E' ', F(G), E ]=1 we have [E' ', F(G)]=1
and because F*(G) = F(G), E ) =1 Thus E =1. Hence
F*(@) = F(@G) = F*@) = F(G) . It follows that [P, OP(F*(@)] =1 and
by induction P < Op(@). Since Z C Z(G), P S Op(G).
Thus Z =1 and F(G) is a p-group containing CG(F(G)). Let
Q be a Thompson critical subgroup of F(G). If p =2, then
PC C(F(G)) < F(G) since the Sylow 2-subgroups of G are abelian, If
p # 2, we may choose R = Ql(Q) and then CG(R) is a p-group by 2. 4,
since r(R)< 2, [R| < r’ andif R=R/@®), |R| < p° stil Cy®
is a p-group and G/CG(ﬁ) € GL(z, p), with abelian Sylow 2-subgroups.
Every such subgroup has a normal Sylow p-subgroup. Thus
PC,R)/C,R) C op(G/cG(ﬁ). Hence P C Op(G). 7
The following Theorem is, it seems to me, unique in finite group
theory. A theorem about the structure of a general finite simple group
with only a very minor restriction on its subgroups! It is followed by an

extension very reminiscent of the uniqueness theorems of Chapter 5. It
is true to say that these next two Theorems are the very cornerstone of

the whole proof.
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Theorem B (Bender). Let A and B be a distinct maximal sub-
group of a simple group G such that F*(A) C B and F*(B) C A. Then
F*(A) and F*(B) are p-groups for the same prime p.

Proof. Since F(B) is an E(A)-invariant solvable subgroup of A,
F(B) C C,(E(A)) by 10.3.

By 10. 8, E(A) = E(A)(E(B))[E(A) E(B)].

Now Cpa)(F*(B) = Cra)E®) CF*(B)( “

Thus E(A) C F*(B) and so E(A) C F*(B)' ' = E(B).

By symmetry E(B) < E(A). Smce A#B, E(A)=E(B)=1.

Clearly subgroups of coprime orders of F(A) and F(B) centralize
each other, It follows that 7(F(A)) = 7(F(B)). For otherwise if
p € 7(F(A)) - 7(F(B)), then [F(B), Op(A)] = 1. Since F(B) 2 CG(F(B)),
we have a contradiction.

Let p € m(F(A)) = n(F(B)). Let P = Op(A), Q= Op(B), R=Op,(A).

First [E(R), FR)]=1 and [0 (A), ER)]=1 Thus E(R)
centralizes F(R)P = F(A) = F*(A) 2 C (F*(A)) Hence E(R) =1 and
F*R) = F(R). Now [Q, F*(R)] = [Q, F(R)] [Q, FA)NR]CQNR =1,
Since Q centralizes F(R)2 CR(F(R)), by 2.2, [Q, R] = 1. —Similarly
[P, O (B)]=1.

¥ Now R € Cs@ g B. Also F(B) = QOP(F(B)) and
P ¢ CL(OP(F(B)) g B. Thus [P, CLQ)]C CLO°(F(B) nC @ =
CB(F(B)) C F(B). Because PF(B)=PQ X OP(F(B)), since subgroups of
coprime orders of F(A) and F(B) commute, we have PQ is normalized
by CB(Q). But now

[PQ, Cp@] < [P, CL@]C F(B) nPQ=Q.

Thus [PQ, C5(Q), C(@]=1. By 0.2 we have [PQ, OP(CLQ)]=1
p
Hence O,(A) £ O,,(07(C5@)) SO, (B).
By symmetry, Op,(B) < Op,(A).
Hence Op,(A) = Op,(B) =1 and 7(F(A)) = 7(F(B)) = {p].
This completes the proof of Theorem B. /

Theorem 12.4, Let A be a maximal subgroup of a simple group
G, S a subnormal subgroup of F*(A) such that CF*(A)(S) €S Let
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BC G be a subgroup of G containing S. Then

(a) O (B)nA=1 for q € n(F(A)).

(b) [0,(B), OP(F*(A)] =1, if p € n(F(A)).

Moreover, if B is a maximal subgroup of G and if either
Iw(F*(A))I >2 or ITI(F*(B))I > 2, then each of the following ensures
that A = B.— -

(¢) A contains a subnormal subgroup S of F*(B) such that
Crx (B)(§) c S

(@ B is an A*=group, [E(B)| < [E(A)| and O (B)=1 for all
q € 7(F(A))'.

(e) A and B are conjugate A*-groups.

Remark., The structure of A*-groups is only minimally required
in (d) and (e). In fact the relevant fact required of the subgroups A and
B is that they have the following structure: X2 Y 2 Z 2 1 where X/Y, Z
are solvable and Y/Z is a direct product of no;—abelian simple groups.
Thus, roughly speaking, this Theorem holds provided the relevant sub-
groups do not involve groups of type A5 wr A5.

Proof. By 10.5(b), S E(A). Also by 10.4, S=(F(A) nS)E(A),
and since CF*(A)(S) cs, Z(F(A)) CS. Thusif pe 7(F(A)), p € n(F(S)).
M [0,B) A, 0P(8)] =1 for all primes p.

For Op(B) N A is an E(A)-invariant solvable subgroup of A. Thus

[Op(B) NA EA)]=1
and

P . —
[op(B) naA, 0°(9)] = [Op(B) naA, F(S)p,] c Op(B) nNADN F(A)p, =1,

(i1) CG(Oq(S)) n Oq(A) < Oq(S) for q € 71(F(A)), q #p.

For CG(Oq(S)) N O (A) centralizes F(S)q, c F(A)q, and E(A).
Thus CG(Oq(S)) n Oq(A) < C(S) n F*(A) < S. It follows that
CG(Oq(S)) n Oq(A) < Oq(S) = Oq(A) ns.

(iii) [Op(B) naA, Oq(A)] =1 for q € 7(F(A)) - p.
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This follows from (i) and (ii) using 2. 2.

Thus if p ¢ 7(F(A)), Op(B) N A centralizes F*(A) since by (iii)
Op(B) nA = CG(F(A)) and by (ii) Op(B) naA < CG(E(A)). Since
C G(F*(A)) < F*(A), it follows that op(B) N A =1, This completes the
proof of (a).

Suppose now p € 7(F(A)).

(iv) CG(Op(S)) n Op(B) c Op(B) nA,

For CG(Op(S)) c CG(Z(F(A)p)) since CG(S) n F*(A) € S. Thus
CG(Op(S)) g A,

(v) Op(S) centralizes Op(B) and so [E(A), Op(B)]=

For [0P(S), 0,(8)] =1 By (iv) and (i), [0P(s), C(0,(8)n0_ (B)]=1
We may now apply 2. 2 to the group Op(B)Op(S) to get the result.

(vi) C(F(S)p.) n F(A)py < F(S)p.

For if x € CG(F(S)p,) n F(A)p, then [x, Op(S)] < Ix, Op(A)] =1.
Clearly [x, E(A)]=1 andso [x, S]=1. Since CG(S) nF*A) C S, we
have (vi).

(vii) We may now apply 2.2 to F(A)p' using (v) and (vi). It follows
that [Op(B), F(A)p,] = 1. Hence [Op(B), OP(F*(A))] = 1. We are done
with (b).

Continuing, let B be a maximal subgroup of G containing S. We
show that under condition (¢), F*(A) is a p-group if and only if F*(B)
is a p-group. For if (c) holds, we are assured of a symmetrical relation-
ship between A and B. Thus we have [Op(F*(B)), Op(A)] =1 for all
p € 7(F(B)) and Op(A) NB=1 for all p ¢ 7(F(B)).

Now if F*(A) is a p-group, then since SC O_(A) n B it follows
that p € 7(F(B)). Thus OP(F*(B) C C4(0,(A). Since
CG(O (A)) < O _(A) = F*(A), we see that F*(B) is a p-group also. Thus
|n(F*(A))] > 2 if and only i |n(F*(B)| > 2.

Now Op(F*(B)) cc (O (A)) CA forall pe 7(F(B)). Also
[O (B), Op(F*(A))] =1 and S0 O (B) < A Dbecause Op(F*(A)) # 1., Thus
F*(B) C A, Symmetry gives F*(B) - A and we may apply Theorem B
to get A C B. This verifies (c). -
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If B is an A*-group, by hypothesis Oq(B) =1 for all primes
q € n(F(A)). By (b), it follows that F(B) C A, By 10. 6(a), since
Co() N F*(A) € S F*(A), E(A) S C B. Part (b) also shows that
[F(B), E(A)] = 1. Since B is an A*-group, it follows that E(A)gE(B).
But |E(A)| > |E(B)|. Thus E(A)=E(B) =1. Otherwise A=B. We
may now apply (¢) with § = F*(B) = F(B) C A and get A = B.

(e) follows immediately from (d). /7

The following two lemmas are easily proved and interesting in
themselves., They are also of interest because they seem not to have

been noticed in even the solvable case.

Lemma 12,5, If G is a group such that F*(G) is a p-group.
If U isap-subgroup of G, then F*(C,(U)) and F*(N4(U)) are p-
groups also.

Proof. Let N= NG(U) C = CG(U). Clearly F(N)p, < F(C)p, <
F(N) , and E(N) € C because UC F(N). By 10.6 E(N)=E(C). It
follows that OP(F*(N)) = OP(F*(C)).

Let x € Op(F*(N)) be a p'-element. Then

[CGUNFX(G), x] S OP(F¥(M) N FX(G) C Z(F*(N)).

Hence [CG(U)DF*(G), X, x| =1. Byo0.2, [CG(U)ﬂF*(G), x| =1. Now
apply 2.2 to (x) acting on F*(G)U. It follows that [x, F¥*(G)]=1 and
s0 X € F¥(G). Hence x = 1. Thus OP(F*(N)) = OP(F*C)) = 1. /

Lemma 12, 6. Let U, V be p-subgroups of a group G such
that VC U. Then if F*(CG(V)) is a p-group, F*(CG(U)) is a p-group
also.

Proof. If V <l U, let N=N (V) Clearly if N C G, induction
on IGI gives the result since CG(U) ccC (V) C N. Hence we may
assume N =G

Now since F*(CG(V)) is a p-group, F*(NG(V)) is a p-group also.
Apply 12.5 to NG(V) = G to get the result.

Since V <I< U, the Lemma follows by induction on the length of

a subnormal series from V to U. /
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13, PROPERTIES OF A*-GRQUPS
Let X be an A*-group, t an involution in X,

Lemma 13.1. If a 2-subgroup T of X centralizes O(X), then

it is contained in F*(X).

Proof, Since [T, O(X)}=1, [T, OFX))] = [T, FOX))] = 1
But because the Sylow 2-subgroups of X are abelian, [T, F(X)] = 1.
But clearly normal subgroups and factor groups of A*-groups are A*-
groups.

Hence F(X)CX(F(X))/F(X) is an A*-group which has no non-
trivial solvable normal subgroups. Thus [F(X)CX(F(X)) : F*(X)] 1is odd.
Hence T _5 F*(X). /

Lemma 13,2, If X is a simple A*-group, then X has one

class of involutions.

Proof. This is well known if X = Lz(q). If X is of type JR,
it follows from 12,1, /
The next two lemmas are concerned with CX(t)—invariant subgroups

of X. We are able to locate at least part of them within F*(X).

Lemma 13.3, Let E bea CX(t)-invariant semi-simple subgroup

of E(X). Then any component K of E is contained in a component L
of E(X). Moreover (i) or (ii) holds.

(i) K = L.

(ii) K is of type Lz(q), q odd, L is of type JR and t

centralizes K.

Proof. Let T be a Sylow 2-subgroup of X containing t. Since
K does not centralize a Sylow 2-subgroup T N E(X) of E(X), there exists
a component L of E(X) suchthat {K, TnL}#1 Now T permutes
the components of E(X) and centralizes a Sylow 2-subgroup of each com-
ponent. Hence T normalizes both K and L. Thus [K, TnL]d K
and if [K, TnL}C Z(K), [K, TnL, K] =1, whence [K, TnL]=1

This is not the case.
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It follows that [K, T nL]=KC L.

If K#L, then CL(t) normalizes L N E 2 K.

If L= L2(2n), then t must induce an inner automorphism on L
since a Sylow 2-subgroup of PTL(2, Zn) is non-abelian if n is even, If
L= L2(pn), p # 2, then n is odd because otherwise a Sylow 2-subgroup
of L is dihedral of order > 8, If then t were to induce the 'transpose
inverse' automorphism on E, a Sylow 2-subgroup of L<{t) would be
non-abelian, Thus t must induce an inner automorphism 7 on L if
L= Lz(Q)-

Since CL(T) is dihedral if L & Lz(q), q odd, and an elementary
abelian 2-group if L = L2(2n), CL(T) normalizes no non-solvable sub-
group of L. except L itself, Here 7 is an involution in L. Hence
K=1.

If L is of type JR, then t centralizes a Sylow 2-subgroup
TnL of L and so t normalizes CL(T) for 7€ T nL., Now
CL(T) =(7) X E and so t normalizes 5(®) = L , agroup of type
Lz(q), q odd. As we saw above, t must induce an inner automorphism
on L1 and so there exists an involution u € L, such that [tu, Ll] =1
I te L1 cL, then CL(t) is a maximal subgroup of L and CL(t) 2K
This is the result. Thus L (t) =L X (tuw) and
[tu, E] C CL(Ll) ncy (1) =<7). 1t {follows that [tu, E] =1 because
[E : I,.-1] is odd,

Now tu centralizes a Sylow 2-subgroup S of L and so tu nor-
malizes NL(S), which is modulo CL(S) a non-cyclic group of order 21,
Let Z/CL(S) have order 7. Let M = NL(S)(tu>. Since

tu € CM(S) 4™, [ty Z] < CM(S) nzc CL(S). Thus tu centralizes

Z modulo CL(S). It follows that either tu centralizes Z or tu acts on
Z like the unique involution 7 € S which is centralized by an element of
order 3 in NL(S) n CL(T). Thus either [tu, Z]=1 or [tur, Z]=1 and
so either tu or tur centralizes NL(S) §£ CL(T), a maximal subgroup of
L by 12.2, Since u7 is an involution, we lose no generality by assuming
that [tu, L]=1 andso C(t)=C  (u)= (u) X E, for some suitable
subgroup El. By 12, 2, CL(u) is a maximal subgroup of L. But

CL(t) = CL(u) normalizes L N E 2 K Thus K C CL(u) = CL(t) and so
K is of type Lz(q). V4
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Lemma 13,4, Let U be a CX(t)—invariant subgroup of X such
that U = F*(U). Then [t, U] =V <4 F*(X).

Proof. We have already seen that subnormal subgroups V of
F*(X) satisfy V = F*(V) = F(V)E(V). If we could show that
[t, E(V)] << F*(X), [t, F(V)] << F*(X), then it would follow that
[t, V]=[t, FW)][t, E(W] << FX(X). For [t, (V)] J F¥(X) if
[t, E(V)] << F*(X).

Thus we assume first that E(U) = U = [t, U], We show first that
[U, FX)] = 1. Let D=Cy(U) N F(X). Then [Cp)th VIS U0 FX),
a nilpotent normal subgroup of U and so [U, CX(t) nFX)] c Z(U). As
usual, [U, CX(t) NFX)] =1 and so CX(t) NF(X) S D. Thus t inverts
(NX(D)ﬂF(X))/D. Note that a Sylow 2-subgroup of F(X) lies in
CX(t) NFX)cD.

Now U = [t, U] centralizes NX(D) n F(X)/D. Arguing for each
Sylow p-subgroup of the nilpotent group NX(D) n F(X) separately, it
follows that U centralizes NX(D) N F(X). Thus D= F(X) and
(U, FX)]=1.

Now any Sylow 2-subgroup of U centralizes F(O(X)) < F(X).
0(X)(F(O(X))) < F(O(X)), by 2.2 it follows that any Sylow 2-sub-
group of U centralizes O(X). By 12.1 it follows that any Sylow 2-sub-
group of U lies in F*(X) andso U < F*(X). Thus U < EX). By
13, 3(a), U =[t, U] 44 E(X). Note that 13, 3(b) is not applicable here

since if a component K of U is not a component of E(X), then [K, t]=1.

Since C

But U =[t, U] is just the product of components not centralized by t.

Now assume that U = [t, U] is a p-group where p is an odd
prime and that X is a minimal counter example.

First if op(x) #1, let X = X/Op(X). By induction [t, T]<< F*X).
But any subnormal p-subgroup of F*(G) is contained in Op(G) for any
group G. Thus [t, U] < Op()_() =1 andso [t, U] < Op(X). Thus
Op(X) =1,

Again U centralizes F(X) for otherwise, CX(t) n F(X) <
CX(U) nF(X)=D and U centralizes NX(D) N F(X)/D. Thus
[U, FOX)] =1 andso [U, O(X)]=1 since (U], |FOX)])=1. For
[F(O(X)), U, O(X)] =1, [0(X), F(O(X)), U] =1 and by the Three Sub-
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groups Lemma, we have [U, O(X), F(O(X))] = 1.
Hence [U, O(X)] < CX(F(O(X)) < F(O(X)).
Now if w € O(X), u € U, w' = wi, f € F(O(X)), and so

lu]
w =W=WfI l

If O(X)#1, let X=X/0(X). Then by induction [t, U] F*(X)
and so [t, U] ¢ F(X). Then [t, UJO(X) < Op(X mod O(X)) = O(X) because
p#2, Thus [t, Ul=U < O(X). Since U < Z(O(X)) we have a contra-
diction to Op(X) =1,

Now X is an A*-group such that O(X) = 1. It follows that
t € F*(X). Hence U =[t, U] C F*(X).

If F¥(X) C X, then U—<1<1 F*(F*(X)) = F*(X), by induction. Hence
X = F*(X). If X is not simple, let N S X be a minimal normal sub-

, a contradiction.

group of X. Since X = F*(X), N is a simple group. By induction
UN << X. But the only subnormal subgroups of X are simple groups
or 2-groups (or products of them) and since U is a p-group, UC N, If
X is not simple there exists N1 il X such that N1 NN=1 and_then
1§) g N1 NN =1 Thus X is a simple A*-group.

Thus either X =1 2(Zn) or CX(t) is a maximal subgroup of X.
In the first case, the only odd order group normalized by CX(t) is 1,
while in the second case U C CX(t). Since U =[U, t], U=1. This
completes the proof. /

Lemma 13,5. Let T be a Sylow 2-subgroup of CX(t) and
U= OF(CX(t)). Then U g O*(X) = F*(X mod O(X)) and CU(T) g oX).
Further for any component E of E(X), the following hold.

(a) U normalizes E;
(b) U/CU(E) is cyclic;
() If E is of type L2(2n) or JR, then U centralizes E.

Proof. Induction on |X]|.
i) OX)=1.

Suppose O(X) #1. Let X =X/0X), C = cx(t). Then c)—((t‘) =C,
F(X) d F(X) and so U =0OF(C)C OF(C) =W.
T

By induction T € W C 0*(X) = O*(X) and so U C O*(X). Also by
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induction, CW(T) =1 and so cﬁ(T) =E:“[}(T)= 1. Hence CU(T) C O(X).
Moreover, if E is a component of E(X), E is a component of
E(X). For E normalizes the solvable subgroup F(X mod O(X)) and so
E centralizes F(X). Since E << X, it easily follows that E C F*(X),
and so E is a component of E(X). Thus W normalizes E by induction
and so W normalizes EO(X). Of course [E, O(X)] =1 because O(X)
is solvable and E-invariant and so E C W normalizes (EO(X))(OO) = E.
Now put D = CW(E). By induction W/D is cyclic and
U/Cy(E) = UC,(E)/C(E) € W/Cyp (). But [D, E]=1 andso
[D, E] S O(X). Hence [E, D, E]=1 and [E, D]=1. Thus D=CW(E).
Therefore U/CU(E) is cyclic.
Again (c) holds since by induction [W, E] =1 and then
[W, E]=1 asusual. Thus [U, E]=1.

(i) F*(X)=0*X)2 T where T is a Sylow 2-subgroup of X.
This is clear because X is an A*-group and O(X) = 1.
(iii) U normalizes E and so (a) holds.

For T normalizes each component of E(X) and centralizes a
Sylow 2-subgroup T n E(X) of E(X). Also CU(T) permutes the com-
ponents of E(X) and centralizes T n E(X). Thus CU(T) normalizes E.
But U = CU(T)[T, U] and by (ii) T < F*(X). Thus
[T, UJS F*X) > E. It follows that U normalizes E.

(iv) X = F*X)U.

Let Y=TF*(X)U and suppose Y CX. Then TC CY(t)gCX(t)
and so U= OF(CX(t)) €Y. Thus UC OF(CY(t)). By induction
0] g O*(Y) and CU(T) % o(Y).

Now [O(Y), F*(X)] = [0(X), F(X)] since [E(X), O(Y)]=1 as
usual, Also [O(Y), F(X)] < o(Y) n F(X)2 =1 because F(X) is a 2-
group. Thus O(Y) C CX(F*(X)) C F*(X) and O(Y) d F*(X). This is
absurd. Hence O(Y)=1, U c F*(Y) = F*(X), CU(T) =1, Parts (b),
(c) clearly holdin Y andsoin X, Thus Y =X,

(v) X =EU, where E is a non-abelian simple group.

First if F*(X) = F(X) is a 2-group, then X=FX)U=FX) X U
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since [U, F(X)]C F(X) n U = 1. This contradicts O(X) = 1.

Let F*(X7= EE1 where E is a component of E(X), and let
Y = EUT. Note U normalizes E by (a). First O(Y) nE =1 andso
[t, O(Y)] =1 because [t, U]= 1. Since Y/ET is nilpotent, O(Y) is
nilpotent, Finally CY(t) =UT CE(t) (__:_ CX(t). Thus U g OF(CY(t)).
Since [E, O(Y)] =1, EO(Y) = E X O(Y).

By induction if YC X, UC 0*(Y), CU(T) =1 and (b), (c) hold.
O*(Y) = ETO(Y) clearly and so U < ECU(E).

Arguing similarly on Y1 = ElUT we have U C E1CU(E1). Thus
U g E1CU(E1) ngE CU(E) = EE1CU(EE1). Hence U (::_ F*(X) and the
theorem is true.

We may assume that X = EUT, Let 7 be the projection of t on
E. If 7=1, then [t, E]=1 andso t € Z(X). But O(X)=1 and
Uc O(CX(t)). Thus 7 # 1. Since [U, 7] =1, CX(t) = CX(T). It
Y = EU C X, we may induct to Y, 7 inplace of X, t and get
U g O*(Y) =E g F*(X) and CU(T NE)=1. Since CU(T ﬂE)=CU(T),
we have (v).

(vi) E is of type L2(q), q odd.

If E is of type L2(2n), then Cp(t)=T and [U, CL()]CUNE
and so [U, CE(t)] < O(CE(t)) =1.

Let U= U/Cy(E) C PT'L(2, 2" and [U, T]=1. At least one of
the elements of T is moved by any field automorphism and so U must
induce inner automorphisms on E. Since CE(T) =T, U=1 and
U= CU(E). This contradicts O(X) =1 since EU=X=E X U,

If E is of type JR, then Cp(t) = (t) X H where
Lz(q) CHC PIL(2, q). Therefore O(CE(t)) =1, Since
[U, Cg(M] Q CL(t) N U we must have [U, Cp(®)]=[U, T]=1. Let
3 T#, s+t Note UC CX(S) and so CX(s)=CE(s)U=(<s> X L)U
where L is a conjugate of H. Clearly CX(s) is an A*-group and
CX(S) CX

Since [T, U]l=1, U= CU(T). Now U C OF(CX(t) n CX(S)) and
by induction U = CU(T) < O(CX(s)). Then [U, CE(s)] < O(CE(S)) =1,
Thus U centralizes (CE(t), CE(S)> =E by 12.2. Again this contradicts
O(X) = 1. This completes the proof of (vi).
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(vii) The final contradiction,

By the above results X = EU, E = I_Z(q), q odd. Therefore
CE(t) is dihedral of order ¢ - €, where q = (mod 4), e = 1, T is of
type (2, 2).

If UCE we are done because E = 0*(X), CU(T) =Un CE(T) =
TrU=1 and U= O(CE(t)) is cyclic.

As U= CU(T)[U, T] and [U, T| g E, it follows that CU(T) # 1.
Let ue CU(T) have prime order p. Let q = rn, where r is a prime.
First u must induce a field automorphism on E, since CE(T) = T. Thus
CE(u) =4 Lz(rm) where m = n/p.

Let CL(t) = IXx) where D is cyclic and x inverts D. Then
[u, Op,(D)] < Op(CX(t)) n Op,(D) = 1. Thus u centralizes Op,(D), T,
On the other hand, u normalizes O_(D), a cyclic p-group. Thus
plcwno (D) > Iop(D)\. Thus [Cp(t) : Cp(t) N CL(W]< p. Now
ICE(’C) n CE(u)’ =r™+1 andso rMP 1 < p(e™ £ 1). This inequality

~

is not solvable with r

1A

3, p i 3. Lemma 13, 5 is completely proved. /

Lemma 13.6. If U is an abelian subgroup of X of type (2, 2)

and E 1is a component of E(X) not of type L (2n), then
—_— __——_._-#_____..._—.. ———— 2 _—
E =<CE(u) cueU"),

#
Proof, Each u € U normalizes E by 13.5 and induces an
inner automorphism on E. Further if u,u, € U#, u, #uz, then u,
u, induce different inner automorphisms on E. But if E is not of type
L (2%
2

distinct maximal subgroups of E. Hence the result. /

, then the centralizers of any two distinct involutions of E are

14, PROOF OF THE THEOREM A, PART I

Let G be henceforth a minimal counter example to Theorem A.
We show as an initial reduction that G is a non-abelian simple group all
of whose proper subgroups are A*-groups.

Thus let N be a minimal normal subgroup of G. Clearly O(G)=1
and 02‘(G) = G because otherwise G is immediately an A*-group. Thus

IN] is even,
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If N is a2-group, then G = CG(N) because G/CG(N) has odd
order. Thus fN| = 2. Now G/N is an A*-group by induction. Since
O(G/N) =1 and O%(G) = G, it follows that G/N = S/N X1 /NXLLXL N,
where S/N is a 2-group and Li/N are simple A*-groups for
i=1,2,..., k.

Because the Sylow 2-subgroups of G are abelian, it follows by an
elementary transfer argument, see [12], that G' "N =1 and so
G'nS=1. Clearly G' is a perfect A*-group with O(G') =1 and so
G' is a direct product of simple A*-groups. Since SI G, G=G' X S
and G is an A*-group, a contradiction. N

Thus we may assume that N is a direct product of isomorphic
simple A*-groups Li’ N= L1 X,.. X Lk’

Clearly CG(N) S G, CG(N) NN=1 and so CG(N) is an A*-group
which has no non-trivial solvable normal subgroups. Thus
NCG(N) = NXCG(N) and G/NCG(N) acts as a group of automorphisms

of N, Since a Sylow 2-subgroup T of G is abelian and T permutes

the components Ll, cens Lk of N centralizing T n Li’ a Sylow 2-
subgroup of Li for all i=1, ..., k, it follows that T normalizes each
component,

We show that a simple A*-group has no non-trivial outer automor-
phism x of order 2 which centralizes a Sylow 2-subgroup.

For simplicity write L = L1 and suppose that L is of type
Lz(pn). Clearly x must induce a field automorphism on L since a
Sylow 2-subgroup of PGL(2, q) is dihedral and non-abelian if ¢ is odd,
and so n=2m is even, But then a Sylow 2-subgroup of L2 (pzm) is
non-abelian,

Thus we may assume that L is of type JR. Let S be a Sylow
2-subgroup of L, x an involution which induces an automorphism on L
trivial on S. Let t €S be an involution and suppose C| (t) = (t) X E
where F = Lz(q) CE < PI1.(2, q) and q is odd. As above it follows
that x must induce an inner automorphism on F. Hence there exists
f € F such that y = xf centralizes F and t,

It is easy to see that y must act trivially on E. For
[y, EJS C;(F)nc (t) = (t) andso [y, E] =1 because [E : F] is odd.
Thus y centralizes CL(t).
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Now y centralizes S and so normalizes NL(S). By Burnside's
Transfer Theorem, NL(S) < CL(t). It follows that NL(S)/CL(S) is an
odd order subgroup of GL(3, 2) of order >3, Hence NL(S)/CL(S) is
a non-cyclic group of order 21,

Let Z/CL(S) ;1 NL(S)/CL(S) have order 7. Either y centralizes
Z or y acts on NL(S) like the unique involution in S which is central-
ized by an element of order 3 in NL(S) n CL(t), viz. t. Thus either
[y, NL(S)] =1 or [yt, NL(S)] = 1. Inboth cases, since [yt, CL(t)] =1,
we have L{x) = L X (z), where z° = 1, because CL(t) is a maximal
subgroup of L by 12, 2.

This shows that TLi < LiCG(Li) for all i and so TN < NCG(N).
Thus G = NC,(N) = N X C,(N) because 0%(G) = G, and then G is an
A*-group if G is not simple,

Thus G is a simple group all of whose proper subgroups are A*-
groups, We remark that a Sylow 2-subgroup T of G has rank at least
3. For otherwise r(T) =2 and |T| =4 by [7]. Then G= L,(@) by
[13]

The proof of Theorem A proceeds by showing that either G is
itself an A*-group or G has a strongly embedded subgroup. But in that
case, by [4], G = L2(2n), Sz(22n+l) or U3(2n). Of these only the groups
L2(2n) have abelian Sylow 2-subgroups and so G is an A*-group every
time. The proof of Theorem A will then be completed.

We study the structure of the minimal counter example G to
Theorem A by considering a collection of maximal subgroups containing
C G(t)’ where t is an involution of G. The maximal subgroups studied
are ingeniously chosen in order to enable the exploitation of the uniqueness
Theorem B of Chapter 12 and its immediate consequence Theorem 12, 4.
As Bender points out in [5], the explicit definition of the class of maximal
subgroups used so frequently in the proof is required for only one result,
14, 1. In that result 14. 1, we identify a collection of subnormal subgroups
of F*(H), where H is a certain maximal subgroup containing C Gr(t).
These subnormal subgroups are ones over whose G normalizers we have
some control. They assume crucial importance in the results which

follow.
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Thus let G be a simple group with abelian Sylow 2-subgroups all
of whose proper subgroups are A*-groups. Assume that G contains a
3-generated abelian 2-subgroup and that G does not contain a strongly
embedded subgroup.

Let t be an involution in G. Let H be a maximal subgroup of
G containing CG(t). Choose H in such a way that for some prime p,
e} (H) #1 but C (t) no (H) =1, If, for no prime p, can we find a
max1mal subgroup HD C (t) with a subgroup O (H) inverted by t,
choose H such that IE(H)) is maximal. Let M(t) be the set of all
maximal subgroups of G containing C G(t) satisfying the above con-
ditions. Note that if for some H € M(t), Op(H) #1 and CG(t) nOp(H)=1,
then every subgroup M € M(t) has for some (possibly different) prime
q, Oq(M) #1 and CG(t) n Oq(M) =1,

Let T be a fixed Sylow 2-subgroup of G containing t and let
7 = 7(F(H)).

We now define a set @ = G(H) of subnormal subgroups of
F*(H) satisfying a kind of uniqueness condition. Let U << F*(H), If
| 7(F*(®)| > 2, then U € @ if and only if N,(U) CH. I
[7(F+@)| = 1, then U € @ if and only if 7(F*(C,(U) = 7(F*(H)). Note
that if U <{< F*(H) and NG(U) C H, then U € @ every time. For if
F*(H) is a p-group and NG(U) = NH(U), then by 12, 7,
F*(CG(U)) = F*(CH(U)) is a p-group also.

Here in 14. 1, we get criteria which allow us to recognize elements
of G(H) more easily.

Lemma 14.1, Let V #1 be a t-invariant subnormal subgroup of
F*(H). Each of the following conditions implies that V € G(H).

(a) Vv isC G'(t)-invariamt.

(b) Some subgroup U € G centralizes V and satisfies [U, t] =

(c) There is a non-cyclic abelian subgroup U of odd order, where

vucc G(t) N C;(V) such that (u) €@ forall ue U#.

Proof. Assume that BC G, B2 NG(V).
Since E(H) c8S= NG(V) N F*(H) for all X << F*(H), S << F*(H).
Also CG(S) n F*(H) € CG(V) NF*(H) C 8. Apply 12. 4(a) and get
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Oq(B) NH=1 for all q € 7(F(H))'. Thus since CG(t) CH and t
normalizes F(B)ﬂ,, t must invert F(B)ﬂ,.

Consider case (b). Let W =B n F*(H) 2 NG(V) n F*(H) 2 E(H).
Now we may apply 13,4 with X = B and get [t, W] < F*(B). Now
U< W andso U=[t, U] [t, W]. Hence U < F*(B).

I |[n(F*®H)| =1, put B= Ng(V), {p} = 7(F*@H)). Then
E(B) < CG(V) < CG(U), since U << F*(B) and is a p-group. (Remember
any subnormal p-subgroup of F* lies in F.) Now F(CG(U) n CG(V)) is
a solvable E(B)-invariant subgroup of B and so [E(B), F(CG(U)ﬂC G(V))]:l.
Since CG(U) n CG(V) is an A*-group, E(B) C E(CG(U) n CG(V)).

Now [F(B)p,, V] cvn F(B)p, =1, since V< F*(H) is a p-group.
Also [F(B)p,, U] c F(B)p, n F(B)p =1, since U is a subnormal p-sub-
group of F*(B).

Thus OP(F*(B)) C OP(F*(C,(U) n C(V)).

But by 12.5, if F*(C(U)) is ap-group, then F*(C,(U)NC(V)
is a p-group also. Thus F*(B) is a p-group also, By 12, 5 again,
F*(CG(V)) is a p-group and so V € @.

It |n(F*@)| > 2, let B2 N(V) be a maximal subgroup of G.
We know U << F*(B) and so NG(U) 2 E(B). Thus H n F*(B) 2 E(B)
because NG(U) C H in this case. It follows that U1 = HnF*(B)d< F*(B).

Now CG(Ul) n F*(B) S_ CG(U) n F*(B) g HnF*B) = Ul'

Taking § = N,(V) 0 F*(H) 2 E(H), we have first § << F*(H),
then SC B, CG(S) N F*(H) € 8. Apply directly 12. 4(c) and get
H=B>2 NG(V) and V € G(H). This verifies (b).

Suppose now (b) does not apply. Let B be a maximal subgroup of
G containing NG(V). By 12, 4(a), Oq(B) NH=1 for all q ¢ n(F(H))".
Thus since CG(t) CH and t normalizes Oq(B), if F(B)ﬂ, #1, t must
invert some non-trivial O (B) for some . But then t must have
inverted some non-trivial Or(H) for some prime r! But then U=Or(H)
is abelian and contained in Z(F*(H)). Clearly U =[U, t] and NG(U)=H.
Hence U € G. Since [V, u] =1, (b) shows that V € G(H). Thus we may
assume that F(B)ﬂ, =1,

Moreover, t does not invert any subgroup Op(H) for any prime
p. For then O (H) € G(H), O (H) C Z(F*(H)) and by (b) V € G(H). Since
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H € M(t), E(H) must then be of maximal possible order. But B is a
maximal subgroup containing CG(t) if (a) applies. Since H e M(t),
|EMH)] 2 |E(B) |. It is clear that we have directly reproduced the hypo-
theses of 12, 4(d) since H, B are A*-groups. Thus we have
H=B2Ny(V) and V € G(H) if |n(F*(B))| > 2 since otherwise 12.4
does not apply. However, if #(F*(B)) = {p}, then F*(CG(V)) is a
p-group also by 12, 5. Thus in any case V € G(H).

In case (c), (u) << F*(H), u eU#. Since (u) is cyclic,
(u) C F(H) forall ue u". Thus U C F(H).

B Suppose |7(F*(H))| 2 2. Let B be a maximal subgroup of G
containing NG(V). Since U < OF(CB(t)). Apply 13, 5(b) and get that every
component of E(B) is centralized by some non-trivial element of U.
Thus if N = O"(F*(B)), then N = (CN(u) tue€ U#>. Since (u) € G(H)
and |n(F*(H))| 22, C,(W) CH Thus NCH. By 12 4(b), F(B) CH
Hence F*(B) < H. We may apply 12, 4(c) since N(V) n F*(H) S B to
get V € G(H).

If F*(H) is a p-group and V ¢ G(H), then F*(CG(V)) is not a
p-group. As remarked above, every component of E(B), where
B=C G(V), is centralized by a non-trivial element u € U, Since
{u) € Q(H), F*(CG(u)) is a p-group. But V C F*(H) is a p-group and
by 12. 5, F*(CG((u>V)) = F*(CB(u)) is a p-group. But clearly
CG(u)#n of (F*(CG(V))) contains non-trivial p'-elements for suitable
ueU . Since CG(u) n Op(F*(CG(V)) < F*(CB(u)) by 10. 7, we have the
required contradiction. This completes the proof of 14, 1. /

Lemma 14.2, H has at least 2 classes of involutions.

Proof. If geG, teHN Hg, where exists h € H such that

-1
& P t, if H has one class of involutions. But then g 'h eCG(t)gH

andso g € H. Thus, if H has one class of involutions, H n H® has odd
order, if g € G- H. Hence H is strongly embedded in G, a contra-
diction. /

Lemma 14.3. Let R be a subgroup of T such that
r(R) =r(T) - 1. Then M(s) #+ {H} for some involution s €R.
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Proof. Suppose M(s) = {H} forall s te(R)#. First if
M(s) = M(s®) = M(s)g = {H}, thenclearly g ¢ NG(H) = H.

Let n € NG(T). Since r(T)> 3, R0R" #1 and so there exists
-1
an involution s €R NR". Then s, s" €R and by assumption
-1
M(s) = M(s" ). Thus n ¢H, N4(T) CH.

But every involution of G is conjugate by an element of NG(T)
to an element of R. Hence M(s) = {H} for all involutions s € H. Now
if seHN Hg, where s is an involution, then g € NG(H) =H and H is
strongly embedded in G. /

Lemma 14,4, Let D be a T-invariant subgroup of odd order
such that [t, D] #1, Then T contains a subgroup R such that
r(R)=r(T) - 1 and [t, CD(R)] #1,

Proof, Without loss of generality, D is a p-group and CD(t)il D
and T acts irreducibly and non-trivially on D/CD(t). Since T is
abelian, T induces a cyclic group of automorphisms on D /CD(t). Also
t acts non-trivially on D/CD(t). Let R = CT(D/CD(t)). Then clearly
r(R) =r(T) - 1. Also CL(R).C(t) =D since Cp /CD(t)(R)=
CpRIC(®)/CL(t). Since [t, D] # 1, [r, Cy®)]# 1. /

Lemma 14,5, Let p be an odd prime such that [t, Op(H)] #1,
If P= Op(H), then P has a CP(t) invariant subgroup P such that
[t, P]#1 and V € G(H) for any t-invariant subgroup V of P, V # 1.

Proof. Suppose the result is false.

Let V= CP(CP(t)).

Firstif [t, V] =1, then [t, P]=1 by 2.2. This is not the case,
Thus [t, V] isa CP(t)-invariant subnormal subgroup of F*(H), Thus
U=1[t, V] € @H) by 14, 1(a). Now for any subgroup W of CP(t) we have
[W, Ul=1. Since U € G(H), W € G(H) by 14. 1(b).

It CP(t) is non-cyclic, there exists a non-cyclic normal 2'-sub-
group U1 of type (p, p) of CP(t), which is, as seen above, an element
of G(H). So by 14. 1(c), since U1 c CP(t) n CP(V), V € G(H). Finally
if Y is any t-invariant subgroup of V, Y € G(H) by the same argument.
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Letting P = V we have the resuit.

If CP(t) is cyclic, first every CP(t)-invariant abelian sukgroup
A of P is centralized by t. For otherwise, [t, A] € G(H) by 14. 1(a)
and then any t-invariant subgroup of [t, A], being centralized by
[t, A] € G(H), is itself an element of Q(H) by 14. 1(b).

Therefore every CP(t)-invariant abelian subgroup of P is con-
tained in CP(t) and so is cyclic. It follows that Z(P') is cyclic. Now
any normal subgroup Q of P of type (p, p) lying in P' is clearly con-
tained in Z(P'). For P/CP(Q) < GL(2, p) and so has order < p. Thus
P'C CP(Q). It follows that P' is cyclic since p is odd. Further
= CP(t)‘ t_ -1 xt_ x'  x

Now if x € P, x =x ~, thenfor y € P' wehave yo =y =y .
Thus [x°, y]=1 and [x, y]=1. Since P = Cp(t)l where
tox1y, P C Z(P). Let Q=@ (P). Since P has class
i_ 2, Q has exponent p and Z(Q), being cyclic, has order p. Also
CQ(t) = Z(Q.

Every non-abelian subgroup M of Q is an element of G(H).

For M' = Z(Q) and so NG(M) < NG(M') = H. On the other hand, if
L #1 is an abelian t-invariant subgroup then either L C CQ(t) = 7Z(Q)
and L e @(H), or [t, L] #1. If x €L is such that xt = x~1, then

L € GH) if (x) € G(H) by 14.1(b). Thus either every t-invariant sub-

1
’

I=1{xeP:x

group of Q lies in @(H) or there exists x € Q such that xt =x
(x) £ G(H).

Consider [t, CQ(x)] =V. If VeG(H) thensois {(x) by 14. 1(b),
a contradiction. Hence V is abelian. But

CQ(x) = (CQ(t) n CQ(x))[t, CQ(x)] € ZQIt, CQ(x)] =Z@QV.

Thus CQ(x) is abelian and of index p in Q. For the centralizer
of any non-central element of Q is of index p in Q. Since CQ(x) is
not cyclic, it is not Cp(t)-invariant. Thus Q has two abelian maxi-
mal subgroups and so IQ[ g p3.

Nowlet RCT, r(R) =x(T) - 1 and C_(R) ¢ Z(Q. Suchan R
exists since we could take R < CT(Q1 /®(Q)) where Q1 is an irreducible
T submodule of Q/®(Q).
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Choose g € G such that t® € R. Then CG(tg) ¢ Z(Q and so
H® + H, Put K = [t, CQ(tg)] c HnH® since C(t8) CHE. Let K, be
the normal closure of K under CG(t) n H®, Since K¢ Q, K1 g Q and
is a p-growp. By 12.4, [t, K ] << Fx(H%) and K=[K, t| S [K , t].
Since [Kl, t] is a p-group, K<< F*H®). Thus KC F(H®) and so
K C Q8.

B If K=Qg, then K=Q since KC Q. Then g eNQ =H, a
contradiction since H® # H. Thus K C Q%, |[K|< p’. But K=K, t]
and so Co () =1. Thus |K|=p. But K¢ CG(t—g) and so K = z(Q9).
Therefore N (K) He.

Now H, H® are conjugate A*-groups and Op(F*(H)) _E_CG(K)=C__Hg.
Thus if §=N,(K) 0 F*(H), S2 E(H) and $<< F*(H). Also
C4(8) n F*(m) C .

I |#(F*@H))| # 1, then H=HS by 12. 4(e), a contradiction.
Therefore F*(H) =P and T acts faithfully on P and alsoon Q and
also on Q/®(Q). Since then T < GL(2, p) and r(T) > 3, we have a
contradiction. /

Lemma 14,6, If F*(H) is a p-group, where p is an odd prime,

then for any involution s € G and any M € M(s), F*(M) is also a p-
group.

Proof. From 14.5, there isa C (t)-invariant subgroup P

Op(H)
of Op(H) such that [t, P]#1 and V € G(H) for every t-invariant sub-
group V of P. Now by 14. 4, there exists a subgroup R cT such that
rR)=r(T) -1 and W € [t, Cﬁ(R)] #1, Of course W e G(H). By 12.1,
we may gss(li;ne that our involutions s € R. Let M € M(s). Let

w=w™M

L , the subgroup generated by the CM(t)-conjugates of W.
Since W C Op(H), CG(t)gH, W1 c Op(H) and so W1 is a p-group. By
12. 4, [t, Wl] 44 F*(M). Thus W =[t, W]C W_ is a subnormal sub-
group of F*(M). Hence wc Op(M).

If P= Op(M), U= NP(W), since F*(NG(W)) is a p-group
(W e G(H)!), F*(CG(U)) is a p-group also by 12. 5. For
CG(U) c CG(W) < NG(W). Now by 12. 6, F*(CG(P)) is a p-group also
since U g P. It follows that F*(NG(P)) = F*(M) is a p-group also.
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This completes the proof, /

The following major Theorem is the cornerstone on which the
whole proof rests, Its proof is at least staggering in its power and
originality. Of course, it is due entirely to Bender.

Theorem 14.7. Let p be an odd prime such that [t, Op(H)]: 1.
Let V be an elementary abelian p- subgroup of O (H) such that
r(V) > 3. Then CG(V JCH forall ve V

Proof. If [t, F*(H)] # 1, then either W1 =[t, Oq(H)] #1 for
some prime q #p, or W2 =[t, E(H)] #1 is an element of G(H) by
14,1(a). For both Wl, W2 are CH(t)-invariant and subnormal in F*(H).
But then (v) cv gOp(H) centralizes W1 or W2 and then 14, 1(b)
implies that (v) € G(H) for v e V- 1. Then CG(v) - NG((V>) CH
since F*(H) is not a p-group.

Thus t € CH(F*(H)) = Z(F*(H)). Let W= CH(V) N F*(H).

Let WX), where X C G, be the set of all W-invariant A*-sub-
groups K of X suchthat K = F(K)ﬂ,E(K) and no component of E(K)
is contained in H.

If UWG)= {1}, then for any maximal subgroup B of G, BD W,
it follows that F(B) is a 7-group and E(B) is a product of compone—nts
which all lie in H, For if a component of E(B) does not lie in H, then
neither does any of its W-conjugates. Then E" e WG) # {1].

Thus E(B) CH and F(B) CH by 12.4(b). Note that OP(F*(1)) #1
since t € F*(H). Thus F*(B) c H— But CG(W) N F*(H) cw and WCB.
By 12, 4(c), we have B=H and H is the only maximal subgroup of G
containing W, Clearly if v € V#, CG(V) 2 W andso CG(V) C H. Thus
we may assume that WG) # {1}.

We derive a contradiction to the simplicity of G from WG)=#1{1}
by a series of steps.

(1) If WS XCG, then [t, FX(X)] € WX).

For if W< XC G, then t inverts F(X)ﬂ, elementwise by 12, 4(a)
since t €e W. Also t centralizes F(X)ﬂ, C H by 12. 4(b) since if
q €7, [0,(X), od(F*®)] =1 and t e OUF*®)) # 1. Now [t, E(X)] is

the product of those components of E(X) not centralized by t, and since
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H/CH(O2 (H)) has odd order, [t, E(X)] is the product of those com-
ponents of E(X) which do not lie in H. For any component of E(X),
which lies in H, lies in CG(Oz (H)) c CG(t). Note t € Z(F*(H)).

Consider now [t, F*(X)]. This group is a W-invariant normal
subgroup of F*(X) and by the argument of the previous paragraph and the
structure of normal subgroups of F*, [t, F*(X)] € UX).

(i) (WX)) € WX) if XCG.

Let K € WX) where X C G. Then K centralizes F(X). For
[K, F(X)ﬂ, t] < [F(X)ﬂ, t]=1 since t centralizes F(X)ﬂ by 12, 4(Db).

[FX)_, t, K] =L

Hence [K; t, F{X)ﬂ] =1 and K = [K, t] centralizes FX) .

Also t inverts ‘ F(X)ﬂ, and so commutes with K in its action
on F(X)ﬂ,. Thus K= [K, t] centralizes F(X)ﬂ,. Hence [K, F(X)] = 1.

Now if X C G, X is an A*-group, t € O*(X) and so
K =[K, t] g O*(X) n CG(F(X)) It follows that K g F*(X).

Thus K = [K, t] C [F*(X), t] € WX) by (i). Hence
(UX)) C [F*(X), t] € WX).

—(iii) There exists R C V such that V/R is cyclic and
WC,R)) # {1].

First replacing V by VQ1 (Z(Op(H))) if necessary we may assume
that CG(V) g H. Choose K € U(G). U F(K)#1, then [V, F(K)] # 1.
For otherwise F(K) g CG(V) g H. But F(K) nH=1 by 12, 4(a). Let
Z be a minimal W-invariant subgroup of F(K) such that [V, Z] # 1,
Let Z1 C Z be an irreducible V-module. Define R = CV(Zl)' By
Clifford Theory, Z = Z1 &... 6 Zr and W permutes transitively the
irreducible V. J W modules. Since R C ZW), RS CW(Z). Thus
Z €UWC,R))

If F(K)=1, let E be a minimal W-invariant normal subgroup
of K. Then [V, E]#1 because otherwise EC C,(V) CH and E ¢H
since K € WG). Let Y =EV(t). Then V C OF(Cy(t) normalizes
every component E1 of E and induces a cyclic group of automorphisms
on each such E1 by 13.5. Let R C CV(El)’ be such th;.; V/R is cyclic.
Since V g Z(W) and W permutes the components of E~ transitively,
R < CV(EW). Thus EW € ‘u(CG(R)). Thus (iii) is done.
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Let M =(‘u(cG(R))> € WG) by (ii). Let v e R and put
Y, =(UC,;()). Then ME Y € WG).

We show

(iv) Y=YV normalizes M.

For since Y € UWG), F(Y) = Z(Y) normalizes M CY. Let E be
any component of E(Y). If E € M, fine. If not, [V: CV(E)] é p as
before. It C(E) 2R, then E C ol e(WCL®)) =M. Thus C(E)DR
and so V =RC,(E). Itfollows that [M, C_(E)] = [M, Cy(E)R] = [M, V].

Now M = F(M)E(M) € U(G). As V-group,

F(M) = (C,(V) n F(M)[F(M), V]. But Ce(V) NF(M) SHNFM) =1 by
12.4(a). Thus FM) = [F(M), V].

Let L be a component of E(M); V normalizes L as before and
(L, V]d L. ¥ [L, V] < Z(L), then [L, V] =1 as usual. Thus
[L, V]=1L and [M, V]=M =[M, C_(E)].

Now [C,(E), E, M] = 1;

[E, M, CV(E)] =1, since E< Y = F(Y)E(Y).

Therefore [M, CV(E), E]=[M, E]=1. We have shown that
either a component of E(Y) lies in M or it centralizes M. Thus
M il Y= Yv.

) (WG)) € WG).

Let S € WG). First S= (CS(V) TV eR#> since R is non-cyclic.
Remember r(V) > 3 and V/R is cyclic and apply 13. 5. Now if v €R,
CS(V) n F(S) is a—W-invariant nilpotent 7'-subgroup of S and so

Cq(v) NF(S) = (‘u(cs(v) n F(8))).

Thus F(S) = (‘LL(CS(V) NF(EQ)) :ve R#>.
On the other hand, if E is a component of E(S), choose v € R#
such that CS(V) O E and then EW c CS(V) and EW c ‘LL(CS(V)). Thus

S = F(S)E(S) = (‘u(cs(v)) TV € R#>.

But then S C NG(M) C G since (‘u(cs(v))> = YV<1 M, for all
v €V. Hence (UWG)) C (‘u(NG(M))> € WG).
Now W<I< H. Let Wd W1<1 ... < Wn=H° Then W1 per-
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mutes the elements of U(G) and hence normalizes (WG)) = A, say.
Arguing inductively we get H normalizes A < NG(M) C G and since H
is maximal in G we have first A C H and then A=1 since A € WQ).
This contradiction completes the pr_oof of 14, 7. /

Lemma 14,8, Let pe7, p#2, VgOp(H). Let M € M(s) for
some involution s € T, M # H. Assume 7(F*(H)) > 2, VC M and either

@) CoW) CH V=V, th

(P) t €CG(V) CH for all v eV and V is abelian of type , p);
or (¢) te CG(V) CH gﬂg#T D W, where W is of type (2, 2) such
that C.(w) CH for all weW.

Then OP(F*(M)) C H, O,H) CM. I [s, V]=1, then
r(Op(H)) =1< r(Op(M)).

Proof. Let P=0 _(H), Q=0_(M). Incase (a), let
CM(t) P P
V. =V c Op(H). Thus applying 13. 4 to V1 we get [t, V1]<]<] F*(M).

Silnce V1 is a p-group and V C V1 in case (a), V << F*(M). Thus
VSO M) =Q and oPFrm) £ C@ € C,(V) CH.

In case (b) by 13,5, V g OF(CM(t)) normalizes each component of
E(M) and induces a cyclic group of automorphisms in each such compo-
nent. Thus OP(F*M)) c (CG(V) (v € V#> CH

In case (¢), V < OF(CM(t)) normalizes each component of E(M)
and centralizes any component of type LA(Zn) or JR. Thus every com-
ponent of E(M) of type L2(2n) or JR lcies in H. Clearly
F(M)p, c (CG(W) cweEW) C H. If a component of E(M) is of type Lz(q),
q odd, it is normalizedby T and W and by 13, 6 is contained in
(CG(w) TWE W#> C H. Thus Op(F*(M)) C H in every case.

If (@ < 2, then since [P n M, OP(F*(M))] S OP(F*() nP, a
solvable normal_subgroup of F(M)p,E(M). Thus [P NnM, EM)] =1 by
a familiar argument. Clearly [P n M, F(M)p,] =1, Thus
[P n M, OP(F*M))] = 1.

By 12.4, PO M S Op(M) = Q. In particular CG(C
C,Z@) M.

If r(Q) > 3, then |7(F*(M))| > 2 because otherwise F*(M) is a
p-group and the_ F*(H) would be a p-;roup by 14. 6, This is not the case

Z(Q)(P nM)) =
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by hypothesis. If [s, Q] # 1, then [s, Q] is aCG(s)-invariant sub-
normal subgroup of F*(M) and so [s, Q] € @M) by 14,1(a). Then
CZ(Q)(P N M) centralizes [s, Q] andis clearly s invariant. By
14. 1(b), CZ(Q)(P n M) € G(M). Hence CG(CZ(Q)(P nM)) € M.
If [s, Q) =1, thenfor all v e CZ(Q)(P n M), CG(V) CM by
14, 7 since r(Q) 2 3.
Thus in every case we have shown that CG(CZ(Q)(P n M)) c M.
Now VS P NM and so CG(P n M) gCG(V) CH and so
)(P n M) gQ N H., Thus CG(Q n H) g M.
It follows that [OP(F*(M)), Cp@NHW]CPn OP(F*(M)) and, by
a now very familiar argument,

CzQ

[OP(F*(M)), Co@ N H)] = 1.

We now have Op(F*(M)) (@ n H) actingon P and Op(F*(M))
centralizes CP(Q n H), Thus Op(F*(M)) centralizes P. Since
OP(F*(M)) #1, F C M.

We are left—only with the last assertion.

Suppose therefore that [s, V] = 1. We have already seen that if
r@Q <2, then P M=P € Q. Thus if r(Q) é 2, then r(Q) _>__ r(P).
Suppose that r(Q) = r(P). Then @ (Z(Q)P has 2 subgroup of rank
> r(Q). It follows that @ (Z(Q)P =P andso C,(P)SC.(Q (Z@Q))M.
Therefore F*(H) C M since PC M. Now Op(F*(M)) CH and PCQ
We have P CQ(P)Op(F*(M))(= §)C H. By 12.4(c), H=M, a contradiction.
Thus if r(Q) § 2 then r(P) < r(Q) andso r(P)=1, r(Q) = 2.

Assume therefore that r(Q) 2 3 and [V, s]=1. If [s, Q] #1,
apply 14. 5, replacing t by s, H by M, to get a subgroup Q1 of Q which
is CG(s)— invariant such that [s, Ql] #1 and Q0 € @(M) for all
s-invariant subgroups Q0 of Q1' Now V ¢ CG(s) and so V normalizes

Q,. Let V= [cQ (V), s]. Since V, Q, are p-groups, CQ (V) # 1.
1 1

If V=1, thenby 2.2, [s, Ql] =1, a contradiction. Thus V #1,
V=[V,s]ccC Gr(V) CH and all s-invariant subgroups of Q are elements
of G&(M). Since |7(F*(M)| > 2, N(V) S M. We have thus verified that
the hypotheses of (a) apply to H, s, V. It follows that OP(F*(H)) cM

and also that QC H. Thus F*(H)CM, FXM)C H and H=M by
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Theorem A. This is not true and so [s, Q] = 1.

Now we find an Ql (T)P-invariant normal abelian subgroup V of
Q of type (p, p). Let A be a maximal abelian normal subgroup of
QPQl(T) contained in Q. If AC CQ(A), we can find ACB c CQ(A)
such that B/A is an irreducible QPQ1 (T)-module and B/Ag Z(QP /A).
Then Ql (T) acts irreducibly on B/A and since T is abelian, Ql (T)
of exponent 2, B/A is cyclic. Thus B is abelian, a contradiction, and
A= CQ(A) € SCN(Q). If A is cyclic, then Q/A is also cyclic and
r(Q) g 2, not the case. Thus A is non-cyclic and Ql (A) has a chief
QPQ1 (T) series with cyclic factors. The group V has been located
successfully.

Any such group V lies in an abelian subgroup of type (p, p, p).
For since r(Q) 2 3, there exists X C Q of type (p, p, p). Since
X/CX(T/) S GL(2, p), [X: (;X(V)]gp. If CX(V) #V, then 'VCX(V) is
abelian and > 3-generated. If CX(V) =V, then VC X. Apply 14.7
and get CG(V) S M forall ve v,

If VC H, we may apply either conditions (a), (b) to M, V, s. For
if [s, V]#1, then let v = (v1> where v? = vgl. Then C,(V ) S M
and [Vl s] = Vl. If [s, V] =1, then (b) applies directly. Thus
OP(F*(H)) M and Q S H. Hence F*(M)C H, FX(H) S M, a contra-
diction, using Theorem A and M # H. Hence V iH

Now V;l VV and for some v €V, CG(V) 2 V. Thus if (b)
applies V C H, which we have already ruled out. In case (c),
v < (CG(W) ‘W€ W#> because W C Ql(T) and again V C H. Thus we
must be in case (a), CG(V) CH, V= [v, t].

If CP(T/) € G(H), then NG(CP(V)) CH and VCH. So CP(T/);:G(H).

Now P' ch(V) and P' € GH) if P'#1. Thusif P'#1,
v < NG(P') g H, a contradiction. It follows that P is abelian, [t, P] #1
because V C P. Apply 14. 1(b) and find that every non-trivial t-invariant
subgroup of P is an element of G(H). In particular CP(V) =1 and P
acts faithfully on V. Since V is of type (p, p), P is cyclic. /

15, PROOF OF THEOREM A, PART II

Lemma 15,1, t € F*(H).
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Proof. We show that [t, O(H)] =1 and the result follows from
13,1,

Let penm p#2, P= OP(H). If F*H) = 02(H), then O(H) =1
and we are done. Assume therefore that [t, P] = 1.

By 14. 5, there exists P g P which is CH(t)-invariant such that
[t, P]#1 and V € @(H) for all t-invariant subgroups V of P. By
14, 4, there exists R C T such that r(R) =r(T) - 1 and [t, Cﬁ(R)] # 1,
Let V=[t, C5(R)] € GH).

By 14.3, {H} #M(s) for some involution s €R.

Suppose M € M(s), M #H, s eR. If P # F*(H), then 14, 8(a)
applies to V c CG(R) < CG(s) S M. Since [s, V]=1, P is cyclic and,
since r(M) > 1, M is not conjugate to H. Now [R, V]=1 andso R
centralizes P, a cyclic group.

Choose g € G such that t® ¢R. Since [t5, P]=1, [t, P] #1,
g ¢ H. Thus H® e M(t®%) and H® # H. This contradicts the assertion
of 14, 8,

Thus P = F*(H) and so by 14,6, F*(M) is a p-group for all
M € M(s) and for all involutions s € G, In particular F*(M) is a
p-group for s € R, M € M(s).

By the ZJ-Theorem of Glauberman, H = NG(Z(J(S))), where S
is a Sylow p-subgroup of H., It follows that S is a Sylow p-subgroup of
G. Similarly M = NG(Z(J(Sg))) and so H, M are conjugate.

Now VS C,R) S C,ls) SM= HE,

Choose U 2V maximal such that U is a p-group and U C H n H,
g £H. Clearly U is not a Sylow p-subgroup of H by the ZJ-Theorem.
Thus N, (U) § H.

We break the remainder of the proof into steps.

(i) Every p-subgroup P1 of G containing a Sylow p-subgroup
U L of NH(U) lies in H.

For if P1 lies in a Sylow p-subgroup s* of G, then
Hn ngU1 D U and by the choice of U, x € H. Thus P1 CH

(i) Cg4v) U

Op(NG(U))Ul C H by step (i) and if x € NG(U) - H, then
Op(NG(U)) C HnHX Maximality of U forces U= Op(NG(U)). Now
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since V € G(H), F*(CG(V)) is a p-group and by 12, 6, F*(CG(U)) is a
p-group also. Thus F*(NG(U)) = Op(NG(U)) = U andso CG(U) cu
This verifies (ii).

Among all groups NG(Y) 2 NG(U), where Y #1 is a p-group,
choose N so that first |N| is maximal, and then lop(N)l is maximal,
and then |N| is maximal, Let 0,M =2, 0, =

(iii) X = Op(N) X Op,(N).

For Op,(NX(U)) < CX(U) cvu by (ii). Hence NX(U) is a p-group,
Since NX(U) g NG(U), NX(U) < Op(NG(U)) = U. Now U normalizes
some complement A to Op,(N) in X. Then UA is a p-group. Since
NG(U) NUA=U, UA=U and A € U. Thus U NX isa Sylow p-sub-
group of X and so N,(U nX) 2 N,(U) and ING(U n x)lp > lN!p.
Since U n X 2 Z, by the choice of N, UnX=7Z. But UNnX isa Sylow
p-subgroup o; X. Hence X = Op,(N) X Op(N).

(iv) N is a p-constrained group.

We show that CG(Z) has odd order and so CN(Z) is solvable.
Hence C (Z) < O p(N) as is well known. Let s be an involution in
C (Z) and take M eM(s)

It [s, Op(M)] =1, then p =2, since Op(M) = F*(M) and then
F*(H) is a 2-group by 14, 6. This is not the case, Thus by 2, 2,

[s, CG(Z) n Op(M)] #1,

Then (s, CG(Z) n Op(M)] is a CN(s)-invariant p-subgroup of N,
By 13. 4, [s, CG(Z) n Op(M)] << F*(N). Hence (s, CG(Z) n Op(M)] <
Op(N) =Z andso [CG(Z) n Op(M), s, s|=1. Apply 0.2 and get a
contradiction, Therefore CG(Z) has odd order and (iv) holds.

We may now apply the ZJ-Theorem to N. Some Sylow p-sub-
group S of N contains a Sylow p-subgroup of NH(U) and so lies in H
by step (i). By the ZJ-Theorem, N = O (N) Ny (Z(J(8))). But then
Z(J(S)) < Op p(N) O ,(N) x Op(N) and so Z(J(S)) ¢ Op(N) Thus
N=N (Z(J(S))) and since |N| is maximal, Z(J(8)) I N. But
Z(J(S)) _ﬁ H since F*(H) is a p-group. This shows that N2 H. But
N 2 NG(U) and NG(U) d£' H. This completes the proof of 15,1, /

Lemma 15,2, O(F(H)) has rank at most 2,
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Proof. Assume r(Op(H)) z 3 for some odd prime p. Let
P= Ql (Zz(Op(H))). Since p is odd, P has exponent p. Every normal
subgroup of Op(H) of type (p, p) liesin P and so P is non-cyclic,

If P/®(P) = P1/<I>(P) X ... X Pk/<I>(P), where Pi/<I>(P) is an
irreducible T-module, define R C CT(P1/<I>(P)) of rank r(T) - 1. This
is possible since T is represented on P1/<I>(P) as a cyclic group. If
P1/<I>(P) is not cyclic, choose W gR with r(W)=r(R) - 1. Then
clearly r(CP(W)) 22 I P1/<I>(P) is cyclic, then kz 2 because
P/2(P) and P are not cyclic. Choose

W C ker (T = aut P1/<I>(P)) nker (T = aut P2/<I>(P))

such that r(W) = r(T) - 2. Again r(CP(W)) Z 2 since r(CP/q)(P)(W)Z 2.

Now if v € P, (v)Z(Op(H)) d Op(H) since P C Zz(Op(H)). Thus
X= (V)QI(Z(OP(H))) is an elementary abelian normal subgroup of Op(H).
Either r(X) Z 3, in which case X lies in an element of SGMB(OP(H)),
or r(X) i 2 in which case X still lies in an element of S@UIB(OP(H)).
For by [8] L.8.4, S€0L (O (H) # 4, and if Y € S (O (H)),
[Y/c ) <p. 1 Cy(X) £ X then XCy(X) I O (H) and r(XCy(X)2 3
It CY(X) C X, XC Y and we are done already. 4

We can thus apply 14. 7 to find that CG(V) CH forall veP.

By 15.1, 2 € n(F*(H)). Now take V c CP(X#V) of type (p, p).
Since [t, Op(H)] =1, te CG(V) < H forall veV ., Alsoif s €W, then
[s, V] =1. Apply 14. 8 and get that if M € M(s), M # H, then r(Op(H))=1.
This is not true by assumption. Thus {H} = M(s) for all s € W.

If W is non-cyclic, there exists a fours-group W0 g W and
te CG(V) C H, where V is a subgroup of CP(R). Also s €R and so
[s, V]=1. Moreover CG(W) CH forall w eWO. Apply 14, 8(¢) to
get that if M € M(s), M # H, then r(Op(H)) = 1. This shows that
M(s) = {H} for all s eR. This contradicts 14. 3.

Thus we have W is cyclic and r(T) = 3. Thus all involutions of
G are conjugate,

Consider W1 =T nF*H). If V2 is any subgroup of P of type
(p, p), V2 c CP(Wl) because [Wl, P]=1. Now t eCG(v) CH for all
A3 V2 and if s er, (s, V2] = 1. By 14. 8(b), r(Op(H)) =1, a contra-
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diction unless {H} = M(s) for all s er. Of course t er and so
M(t) = {H].

If W1 is non-cyclic, then since r(T) = 3, we have an immediate
contradiction to 14.3. Thus W =(t)=T nF*(H) C Z(H) and H=C(t).

Now suppose M € M(s), s €R, M # H. Then M is conjugate to H
because all involutions are conjugate and M(t) = {H}. So {M]} = M(s).
But CP(SLQ CP(R) #1 andso PNM # 1. Thus CG(P ﬂM)ECG(V)gH,
vePNM. Itfollows that [t, CG(P N M)] = 1. Now we have
)X P nM acts on Op(Z(M)) and by 2. 2, [t, Op(M)] =1. Thus
Op(M) CH

Now choose VgOp(M) of type (p, p). Remember M is con-
jugate to H and so r(Op(M)) 2> 3. Then VCH, [s, V]=1 since
M= CG(S). Interchanging s, t, H, M in 14,8, s ¢ CG(V) CM forall
veV,V isof type p, p; [t, V]=1. Since M #H and r(Op(M)) =
r(Op(H)) 2 3, we have a contradiction. /

Lemma 15. 3. H/E(H) is solvable,

Proof. We show that H/CH(F(H)) is solvable and so
H/F(H)CH(F(H)) is solvable, Since F(H)CH(F(H))/F*(H) has odd order,
it is solvable, Hence the result.

Let K= H(w). Then K acts on F(H) and if [K, F(H) ]
for all p, then C (F(H))DH( =) Thus choose p such that [K, F(H) ]
Since K = Op(K) there exists a p'-subgroup X C K such that
X, F(H)p] 1. Let D be a Thompson critical subgroup of F(H)p and let
C=Q (D) Of course p # 2 because H/C(F(H)z) is odd order and
solvable andso KCC (F(H) ).

Now by 15. 2 r(O(H)) < 2 andso |C| < p. Letting C=C/®(C),
we have first CK(_) is a p-group, and K/CK(_) is a subgroup of
GL (2, p) and an A*-group. The only such subgroups are solvable. Thus
K is solvable, a contradiction. /

Lemma 15.4. Let K be a component of E(H). If {H} = M(s)
for every involution s € CT(K), then NG(T) CH
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Proof. Let W=C.(K). Assume N, (T) ¢ H=M(s) forall
8 € Ql (W).

(i) T is elementary abelian. .

For let g ' ¢ Ng(T) - H. If Wn WS #1, then there exists
w, WS € W involutions and {H} = M(w) = M(w®). It follows that g € H,
a contradiction, Since T=(KnT)®W and KnT is elementary, W
is elementary.

Let X, Y be defined as follows:

X= NH(T)/CH(T), Y= NG(T)/CG(T).

(i) KJH

Since CG(T) < CG(t) CH, XCY. Byassumption X #Y. If
yeY-X, WnwY=1 andso |W|< [T:W]=|Q|, where KnT=Q.
In particular there are at most two components of E(H) with Sylow 2-
subgroups as large as Q. Moreover if |T| = |Q|2 and E(H) is a
central product of two groups isomorphic to K, then H cannot permute
the two groups K. It follows that K'd H.

Let ]Q| =gq. Choose a subgroup R of K of order q - 1 which
centralizes W and is regular on Q. We show that

(iii) X = NY(W) 2 NY(Ro) for all subgroups R0 #1 of R.

Forif neN (Ro)’ then W" is centralized by Rro1 = Ro' Since

Y
R acts regularly on T/W, W' =W andso N (R,) S N (W) because X

normalizes K. Butif y €Y - X, then W n 5 =1. Therefore
X = NY(W).

(iv) If #(F(Y)) # 7(F(Y) n X), then |W| =2, |Q| =4.

If #(F(Y)) # a(F(Y) n X), let NC Z(F(Y)) be a minimal normal
subgroup of Y such that NnX # 1, T;en every element of R acts
fixed-point freely on N since CR(RU) € X for all subgroups R0 of R,
R[J #1. Put C= CT(N).

First CN'WCWnW", neN andso CnW=1 Hence
[C, R] since R is regular on T/W. Because RCK,
[C, RICKNT=Q. But R isregularon Q andso C=Q or
1.

Q a a
o

Suppose C = Q. Then
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T=[N, T]®C (N) =[N, T] ®Q.
Here [N, T], Q are R-modules and so
CT(R) =(CR)N[N, T) ® CQ(R).

Since WNC=WnQ =1, it follows that W C [N, T]. But then
W =[N, T] and this is impossible because N normalizes [N, T] and
wlnw=1 for neN.

Thus C=1. Now T is a direct sum of faithful and irreducible
RN-modules and by [12] 3. 4. 3, we have |T|=q|W| = |w|%l. This
only has solutions if |W| =2, q = 4. This verifies (iv).

(v) If W is cyclic, then O(H) = 1,

For T is elementary andso T C F*(H) since s € F*(H) for all
s € CT(K)# by assumption and of course K nT C F*(H), Bz; 12.1, G
has a single class of involutions if W is cyclic. Let s € T . Since
H= CG(W), W=(w), M= cG(s) is conjugate to H andso T C F*(M).
Thus O(M) < CG(t) because t € F*(M) centralizes
F(OM)) 2 CO(M)(F(O(M))). Thus O(M) C H. Similarly O(H) cMm

Now K centralizes O(H), a solvable K-invariant subgroup of H
and so F(O(H)) < OF(CM(t)) < O*(M) and
F(O(H)) < c(T) n OF(CM(t)) € O(M) by 13.5. Thus F(OM)) < OM)CH
and so F(O(H)) c F(O(M)). By symmetry, F(O(M)) c F(O(H)) and
H=M if OH) #1, But then H= CG(s) for all s € T. This is not
the case because H is a maximal subgroup of G and NG(T) fi_; H.

(vi) #(F(Y)) = n(F(Y) n X).

If #(F(Y)) # 7(F(Y) n X), then |W| =2, |Q| =4 by (iv) and
OH) =1 by (v). Thus F*(H) =W X K and K is of type Lz(r) where
r is odd. Then G is of type JR, a contradiction.

(This is the only time the exact structure of a group of type JR
is used.)

(vii) Put F = R(F(Y) nX). Then NF(R) =F = CF(R).

For R S X, F(Y) nXd X. Thus F is a nilpotent group. But
R acts regularly on Q# and so the normalizer of R in the full linear
group on Q is, modulo CF(Q), a subgroup of the multiplicative group
of the field GF(q) extended by an automorphism a. If @ #1, sucha
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group is non-nilpotent and so F/CF(Q) = R. It follows that F=RXCF(Q).
Hence R C Z(F).

Let p € n(F), P =@ (Z(Op(F))).

(ix) NY(P) cz.

Let y € NY(P) - X. Let x €CF(Q), [%, T] C W since T=WoQ.
Also if z € R#, CT(z) =W. -

First C,(@Q n CP(Q)y =1, Forif a, a’ € Cp(Q), then
[a, TICWnWY=1 andso a=1. -

Also PnR)n(®PnRY =1 Forif a, a¥ €P nR, then
-1
Cp@)=W= cT(ay ) and W =W’, a contradiction.

Since R is cyclic and P is elementary, |P ﬂR| g p. But
P=PNR®C,(Q. Itfollows that |P| =p°. 1f S is any subgroup of
P suchthat P=(P nR)S = CP(Q)S then CQ(S)g CQ(P) =1,

CW(S) E_ CW(P) =1,

Thus S acts without fixed points on T. But P NR, CP(Q) have
fixed points on T and are moved by y. Therefore they must be inter-
changed. But then y has even order, a contradiction.

We have now shown that NY(P) cX for P = 91 (Z(Op(F))) for all
primes p.

Consider now Rp acting on F(Y)p. If F(Y)p D (F(Y) n X)p
choose M such that (F(Y) n X)pC Mc F(Y)p and M is the smallest
such Rp-invariant group, Then [Rp, M] < (F(Y) n X)p.

Hence M normalizes R (F(Y) n X)p = Fp and so
M g NY(P) =X. Thus (F(Y)n X)p = F(Y)p. Since #(F(Y)nX)=n(F(Y)),
we have F(Y) n X =F(Y). Now [R, F(Y)]=|[R, F(Y) nX]=1 andso
R C F(Y). Hence F=TF(Y) and P Y. Thus X =Y. This completes
the— proof. / B

Lemma 15,5, Let K be a component of E(H). Then CT(K) is
not cyclic.

Proof. Let W=C,(K)= (w). Since Kn T is elementary, by
transfer |W

=2 and NG(T) is transitive on involutions of T by 12. 1.
For KnT has a single class of involutions. If g € G and t& ¢ W,
then C(w) € H®, But K c CG(W) and since H/E(H) is solvable by 15. 3,
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K=K>5 Then geG and t € W.

But then t € CT(K) nF*(H) by 15.1 andso t € Z(H). Thus
{H} = M(t) and so by 15, 4, NG(T) C H. But now transfer gives a contra-
diction to the simplicity of G. This completes the proof. /

Lemma 15. 6, Assume E(H) #1. Let K be a component of
E(H). Then

(a) CG(K) CH

(b) f KCM € M(s) for some involution s € T, then M = H.

() NG(T) CH.

(d) K is of type L2(2n).

Proof. If possible choose, H, t, K such that K is of type JR.
The proof proceeds by verifying (a), (b), (c) with this restriction on K.
When (d) is proved, it follows that this restriction on K is vacuous and
the Lemma is completely proved.

Choose an involution k € T N K, M € M(k). By 15. 3, H/E(H)
and M/E(M) are solvable.

If K is of type JR, let N be the product of all such components
of E(H). Otherwise put N = E(H). Note that N is characteristic in
any subgroup S of E(H) which contains it.

Let K1 # K be a component of N. Then K1 < CG(k) C M since

k € K. Because M/E(M) is solvable, K1 C E(M). Let
C_ (t) -
E=K M Then E = E(E) lies in E(M) and by 13. 3 any component

of E, for example Kl, is either a component of E(M) or is of type
Lz(q) contained in a component of E(M) of type JR. By choice of H,
if K1 is of type Lz(q), no component of E(M) can be of type JR.
Thus K1 is a component of E(M) and so K1 ;] EM).

Let N=KK1 Kr' Then K1 Kr:<-]- E(M) OCG(K) <
CG(K) (_E_ CG(k) g M). It follows that N=KK1. .o Krél KE(CG(K)) =
E(KCG(K)). Hence E(KCG(K)) g NG(N) =H and so E(KCG(K))gE(H).
Now N char E(KCG(K)) and so NG(E(KCG(K))) c NG(N) = H. Therefore
C G(K) < H and (a) holds.

(b) If KCM €M(s), then KC EM) and as above, K is a
component of E(M; Thus by (a) we ha;e C G(K) C M. Therefore
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E(M) CH and so E(M) C E(H). But also E(H) C M. Hence E(H)=EM)
and H= M. - N

(¢) Let U= CT(K). By (b), M(s) = {H} for all involutions
s € U. Then by 15. 4, NG(T) CH and by 15.5, U is non-cyclic.

(d) Let E be the product of all those components of E(H) not
of type L2(2n). We show that E =1 and then (a), (b), (c), (d) hold
without restriction. Assume E # 1,

Since U is non-cyclic and CG(u) g H for all ue U#, using
{H} =M(u) forall ue U#, every T D U invariant 2'-subgroup D of
G liesin H. Also DCE for all T-ir_l-variant subgroups D of G such
that E(D) =D and no component of D is of type L2(2n) by 13. 6.
Remember T normalizes each component of D.

Let M € M(s), M #H, s € T. Solvability of M/E(M) implies
that M = O(M)E(M)NM(T). For TOM)E(M) ;1 M, since M is an A*-
group, and then the Frattini argument applies. Since NM(T) CH,

O(M) € H, E(M) jt_ H. Let L be a component of E(M) not contained in
H. Let V=C(L).

By 15, 5 applied to M, V is non-cyclic.

If CG(V) ™M for all v € V#, then E which is V-invariant,
would lie in E(M). Also any component of E(M) not of type L2(2n) is
T2U invariant, Thus every component of E(M) not of type L2(2n)
lies in H. Conversely every component of E(H) not of type L2(2n) lies
in M. Thus E is the product of all components of E(H) and also
E(M) not of type L2(2n). Thus H = M, a contradiction. Thus there
exists v € V such that C G(v) £ M, where v is an involution,

Let R e M(v). Then R #M and of course L CR. Every com-
ponent of E(R) is T-invariant and every component of—E(R) of type JR
lies in H by 13, 6. Thus every component of E(R; of type JR lies in

s
E(H) andsoliesin E. By 14.3appliedto L &' C E(R), where
C,(s) Cgr(s) -
clearly L is semi-simple, since L C E(M), we see that L

is a component of E(R) since otherwise L is of type Lz(q) and lies in
a component of E(R) of type JR. Since L £ H, this last possibility
does not arise.

But now if K is not of type JR, our restriction on K, t, H is
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vacuous and so (a), (b), (c) hold all the time, Apply (b) to M, L in place
of H, K and get M =R, a contradiction. Therefore K is of type JR
andso [T:U]=8 But UnV=1 forif xeUnV, CG(x)gH and
Ce® 2 LEH Thus |V] < 8.

But |V|=[T:TnL]. Thus E(M)DL has at most two com-
ponents and E(R) O L has at most two comp_onents. But then LI M, R,
a contradiction. //_ -

Lemma 15. 7. H is solvable.

Proof. If E(H) #1, let K be a component of E(H), U= CT(K).
By 15. 6, NG(T) CH and M(s) = {H} for every involution s € U. Also
by 15. 5, U is non-cyclic. Hence any U-invariant odd order subgroup
of G is contained in H.

Let M eM(s), M#H, s € T. Since M/E(M) is a solvable A*-
group, M = O(M)E(M)N, (T). Thus E(M) ¢n

Let L be a component of E(M) not contained in H and let
V= CT(L). By 15, 4, NG(T) CM and M(V) = {M} forall ve V#.
Also UNV =1 because if x is an involution in U NV,

L g CG(X) g H.

i) We may assume that L g M.

If neither KJ H nor Lg M, then both E(H) and E(M) contain
at least two other components isomorphic to K, L respectively. Then
lul > |TnK|=[T:U], [V]> |TnL|=[T:V] andthen UNV 1.
Thus we have (i),

Since K is of type L2(2n), K has a cyclic subgroup R whic;'n is
inverted by some involution in K and which acts regularlyon T N K",
Then U = CT(R) and R C NG(T) c M. Thus R normalizes L, LNT
and CT(L). Moreover R acts irreducibly on [R, T]=T n K and so
Vn[R, T] or VNn[R, T]=V.

(ii) U=TnL and RL=R X L.

Forif Vn[R, T]=1 then [V, R] =1 because R centralizes
T modulo [R, T]. But vV n CT(R) =VnU=1 Thus V 2 [R, T] and
if VD[R, T], then CV(R) #1 and CV(R) g Uunv.
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Thus V=[R, T]. It follows that R centralizes L nT. But
T=V&(LnT). Since CT(R)=U2L NT and U NV =1, we have
U=LnT.

Moreover R normalizes L, of type L2(2n) and centralizes a
Sylow 2-subgroup L N'T of L. Thus R cannot induce field automor-
phisms on L and must induce inner automorphisms on L. Since
CL(L NT)=LnNT, wehave {R, L]=1 and RL =R X L.

(iii) U is a Sylow 2-subgroup of C (R)

For let U DU be a Sylow 2- subg‘roup of C (R) Then
U CC (u)CH for ueU andso UhCTﬂC (R ) for some h €H,
Then Rh - Kh a component of E(H) of type L 2™ and R is a sub-
group of order 2" . 1 acting reg‘ularly on T n Kh But

(T n g ) X CT(K ) and CT(K )D CT(R = Uh Since
Ic ®Y| = Ic (K)| = |U|, we have |U | = |ul, v ,=U and U is
a Sylow 2- subg'roup of CG(R).

(ivy U < F*(CH(R)).

Since T n L is elementary by (ii), U is elementary abelian.

By 15.1, U C F*(H) because M(u) = {H} for all u € U by
15.6. Thus UC C(R) N F*(H).

Let F*(H) = KK1 . KrF(H);

CG(R) nF*(H) = RK1 . KrF(H);

RF(H) < F(CH(R)).

Now K1 ves Kr normalizes F(CH(R)), a solvable subgroup of
H. Hence K1 ves Kr centralizes F(CH(R)). Since CH(R) is an A*-
group, it follows that K1 - Kr g F*(CH(R)). Hence
U g F*(H) n CG(R) g F*(CH(R)).

v U = F*(CG(R)) andso L g F*(CG(R)).

For O(CG(R)) is a U-invariant subgroup of G. Thus
O(C;R)) C H. Hence [O(C,(R)), U] S O(C,R)) N F*(Cy(R))SF(CHR)).
Thus [O(C;R), U, Ul =[O(C,®)), Ul=1. By13.1, UCF*C,R).
Since U is a Sylow 2-subgroup of CG(R) and L C CG(R), it follows
that L ¢ F*(CG(R)). Thus L = E(CG(R)). It follows that
NG(R) < NG(L) =M. Hence K=< T nKk, NK(R) > C M. This contra-

78



dicts 14, 6(b) because M # H. This completes the proof. /
Lemma 15, 8, NG(T) CH

Proof. Since H is solvable and t e F*(H), t € O2 (H). 1If
OH) =1, NG(T) CH clearly. Let pen p+2 Let P beamaximal
T-invariant p-subgroup of G containing Op(H).

(1) PCH

For CG(P n H) g H and so [t, CP(P n HJ g Pn OZ(H) = 1. Since
[P nH, t] CPn 02 (H) = 1, 2.2 implies that P c CG(t) < H.

(i1) (MG(T, p)) CH

The Transitivity Theorem 4.1 obviously applies here and so
C (T) C H acts transitively on the maximal elements of A G(T’ p").
Smce PCH 7 o(T, PV S H

Now let g G N,(T). Since HE D T, F(Hg) is centralized by T.
Because F(H ) € (T p", F(Hg) ,gH by (11) Thus F(Hg)gH.
It follows that [t F(Hg)] C[t, F(Hg) Jc F(Hg) N0, E) =1. Because
[t, FO®®)] =1, [t, oE®] =1 and 50 O(Hg)CH Since H has
2-length 1, being a solvable A*-group, O(Hg) < O(H). Thus H® =H
and NG(T) g H. /

Lemma 15, 9, CG(x) CH for all x € 02 (H)#. Also 02 (H)

is non-cyclic,

Proof, OZ(H) is clearly non-cyclic because, by 15. §, if 02 (H)
were cyclic, Oz(H) c Z(NG(T)) N T and transfer then contradicts the
simplicity of G.

Let x € Oz(H) be an involution, M € M(x). By 15, 8, NG(T) cM
andso H= O(H)NG(T) CM. For [x, O(H)] < Oz(H) NO(H) =1 and so
OH) S Cq® SM. /

Lemma 15,10, M(s) = {H} for all involutions s € T#.

Proof. Forlet M € M(s), s € T. Then M = O(M)N (T). By
15.9, O(M) C H because O(M) —(CG(x)nO(M) x €O, (H) > By 15. 8
G(T) CH. Thus M=H. /
This contradicts 13. 3 and completes the proof of Theorem A,
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APPENDIX: p-CONSTRAINT AND p-STABILITY

These concepts are rather natural generalizations of aspects of
the theory of p-solvable groups - see [14]. The definition of p~constraint
is taken from a crucial property of p-solvable groups noticed in the
famous Lemma 1, 2, 3 of [14]. The definition of p-stability is taken from
the famous Theorem B of the same paper. The reader should be familiar
with both that paper and also the exposition of these concepts in [12]. A
very little discussion of these topics is included to overcome an error in
the Gorenstein treatment and also an omission - it is important to know

how much induction one has with these concepts.

Definition. Let p be any prime. A group G is said to be p-
constrained if, when P is a Sylow p-subgroup of Op' p(G), then
’

@) SO, (.

Definition. Let p be an odd prime, G a group in which
O (G) # 1, Then G is said to be p-stable when, for any p-subgroup
A € G and any A-invariant p-subgroup P c O (G) such that
O (G)P <1 G and [P, A, A]l=1 it follows that

ACG(P)/C4(P) S O (NG(P)/Ci(P)).

First, it is easy to see that if P is a Sylow p-subgroup of Op',p(G)
and CG(P) is p-solvable, then G is p-constrained. For by Lemma
0.3, CG/O .(G)(P) = CG(P)Op,(G)/Op,(G) and there is no loss of gener-
ality in assuming O (G)=1. Thus C (P) <1 G and we can find
K <1 G, KD>P such that K< PC (P) and K/P is a chief factor of
G/P it C (P) $ P. Since P = O (G) K/P is a p'-group and then
a g-group for some prime q #p. Slnce KcPC (P) K=PC (P) Let
Q be a Sylow g-subgroup of K contained in CK(P). Then
K=PQ=PXQ andso Q c Op,(K) c Op,(G) = 1. This shows that G
is p-constrained if CG(P) is p~solvable where Op,(G)P = Op,’p(G), P
a p-group.

Notice however that the property of p-constraint does not neces-

sarily pass to either subgroups or to factor groups. In order to see this

80



consider A5 X C3 g Aa' Clearly A5 X C3 is not 3-constrained. We
can make a group 78(A5 X C3) by extending an elementary abelian group
of order 7° by A5 X C3 with the natural action. Now let this new
group act faithfully on any elementary abelian 3-group. The group
G= 31{78(A5 X C3) so constructed is clearly 3-constrained since the
elementary abelian group 3k = 03,, 3(G) is self centralizing. Since
A5 X C3 is both a subgroup and a factor group of G, we see that p-
constraint does not induct in either direction.

The following result shows that some induction to both factor

groups and subgroups is possible under certain circumstances.

Lemma 1. (a) A group G is p-constrained if and only if

G/Op,(G) is p-constrained.

(b) ¥ G is p-constrained, then NG(P) and CG(P) are p-
constrained for every p-subgroup P of G,

Proof. (a) This follows immediately from 0. 3.

(b) Using 0. 3 and (a) we may assume that Op,(G) =1. The
result follows from 12. 5,

We turn now to p-stability. It is worth stating the celebrated
Theorem B here so that the original genesis of p-stability can be dis-

cussed.

Theorem B (P. Hall and G. Higman). Let G be a p-solvable
group of linear transformations in which Op(G) =1, acting on a vector

space V over a field F of characteristic p. Let x be an element of

order pn. Then the minimal polynomial of x on V is (X - 1)* where

—n
® r=p or n

(ii) there exists an integer n < n suchthat p . is a

power of a prime ¢ for which the Sylow g-subgroups of G are non-

abelian, In this case, if n, is the least such integer, then

l’l—l’l0 1’10 n
p e -D<r<p.

Of course, it is no surprise that the minimal polynomial is of the

form (X - 1)* where r < p". Clearly the minimum polynomial divides
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Xpn -l=X- l)pn. The interesting part of this Theorem is the lower
bound. For our purposes we will enquire when the constant r can be
2, i.e., when will x have quadratic minimum polynomial? Clearly it
always will if pn = 2 and this is the reason for excluding the prime

p = 2 from the definition of p-stability. n-n

Thus r = 2 occurs only when p 0(p 0 1) = 2 and this holds
only when n = n = 1, p= 3. A Sylow 2-subgroup of G will be non-
abelian and 3/ ,G| A careful reading of the proof of Theorem B shows
that r > 2 unless SL(2, 3) is involved in G.

To get to the hypothesis of Theorem B in an abstract group G,
suppose that P is a p-subgroup of G and that Op(NG(P)/CG(P))=1. Let
A Dbe an abelian p-subgroup of NG(P) and let V=P /¢(P). Then
[P, A, A]=1. If veV, AeA, [v,a]=-v+ V=g lta

)
[v, a, a] = v('1+a)2.

Since [P, A, A]=1, (-1 + a)? is the zero endomorphism of V
and so a acts on V with at worst quadratic minimum polynomial. If
for example SL(2, 3) is not involved in G, we know that a
must act trivially on V. It will follow that AC P and so P contains
every abelian subgroup normal in a Sylow p-subgroup of N(P). Further
infor mation can be found in [12].

Once again, p-stability does not go over to proper sections.

For a careful reading of the proof of 3. 8. 3 of Gorenstein [12] shows
that, when x and y are conjugate p-elements in a group X such that
{x, y) is not a p-subgroup while x acts on a G-vector space of character-
istic p with quadratic minimum polynomial, it follows that (x, y)
involves SL(2, p).

Now consider, As’ the alternating group of degree 8, Let V be
an elementary abelian 3-group of order 38 and G the split extension
of V by As with the natural action of As on V. Given any 3-element
x of A_ there is always a conjugate y of x in A_ such that (x, y)E'A4.
Hence (x, y) does not involve SL(2, 3) and so X cannot act on V with
quadratic minimum polynomial. Thus G is 3-stable.

Since however G contains a section isomorphic to Qd(3), a split
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extension of a group of type (3, 3) by SL(2, 3) and a classical non-
3-stable group, we have exhibited a 3-stable group with a non-3-stable
proper section,

In view of this, the following Lemma is useful.

Lemma 2. A group G in which Op(G) # 1 is p-stable if and only
if G/Op,(G) is p-stable.

Proof, If G is p-stable, write G = G/Op,(G), etc. Suppose that
A < NG(F)=C is such that [P, A, A]=1 where A, P are p-subgroups
of G. Let K=Op,(G). Now A normalizes PK and since the number
of Sylow p-subgroups of PK is prime to p, there exists a k € K such
that Ak normalizes P.

Also [P, Ak, Ak] € K. Hence

[P, Ak A]g NK=1

. . k

Therefore since G is p-stable, A CG(P)/CG(P)gOp(NG(P)/CG(P)).
By 0.3, C= (P) CG(P)K/K, and so

G/C (P) G/CG(P)K= Ng(®P)Cq (P)K/C,(P)

=N (P)/(N (P)nc (P)K) =N (P)/C (P)-
Since AXC GB)/CP) SO (NG(P)/C,(P) = 0 (‘/c (P) and
= A, C-—(_ ) = Z P), we have that G is p-stable.

Conversely suppose that G = G/Op,(G) is p-stable, Let P bea
p-subgroup of G such that Op,(G)P c G and suppose that A C NG(P)
is a p-subgroup such that [P, A, A]=1. Since [P, A, A]=1, we
have that

Acg®P)/cg®) O (‘ /C5®@)).
Now

Cs®) = C5(P)0,,,(G)/0,,(G)

and
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Ng (). C4(P).0_,(G)/C4(P).O,(G) = G/C(PIO_,(G)

= Ng(P)/(NG(P) 1 (C4(PIO,,(G) = N (P)/Co(P).

Thus under the above isomorphism
ACG(P)/C((P) S O (NG(P)/C((P))

and G is p-stable. Lemma 2 is completely proved.
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